Stanford-university-exam-eye-catch
by Yu · Published · Updated


More from my site
Is the Following Function $T:\R^2 \to \R^3$ a Linear Transformation? Determine whether the function $T:\R^2 \to \R^3$ defined by \[T\left(\, \begin{bmatrix} x \\ y \end{bmatrix} \,\right) = \begin{bmatrix} x_+y \\ x+1 \\ 3y \end{bmatrix}\] is a linear transformation. Solution. The […]
Sherman-Woodbery Formula for the Inverse Matrix Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\R^n$, and let $I$ be the $n \times n$ identity matrix. Suppose that the inner product of $\mathbf{u}$ and $\mathbf{v}$ satisfies \[\mathbf{v}^{\trans}\mathbf{u}\neq -1.\] Define the matrix […]
If a Group is of Odd Order, then Any Nonidentity Element is Not Conjugate to its Inverse Let $G$ be a finite group of odd order. Assume that $x \in G$ is not the identity element. Show that $x$ is not conjugate to $x^{-1}$. Proof. Assume the contrary, that is, assume that there exists $g \in G$ such that $gx^{-1}g^{-1}=x$. Then we have \[xg=gx^{-1}. […]
Linearly Dependent Module Elements / Module Homomorphism and Linearly Independency (a) Let $R$ be a commutative ring. If we regard $R$ as a left $R$-module, then prove that any two distinct elements of the module $R$ are linearly dependent. (b) Let $f: M\to M'$ be a left $R$-module homomorphism. Let $\{x_1, \dots, x_n\}$ be a subset in $M$. Prove that if the set […]
The Vector $S^{-1}\mathbf{v}$ is the Coordinate Vector of $\mathbf{v}$ Suppose that $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for $\R^2$. Let $S:=[\mathbf{v}_1, \mathbf{v}_2]$. Note that as the column vectors of $S$ are linearly independent, the matrix $S$ is invertible. Prove that for each vector $\mathbf{v} \in V$, the vector […]
Express a Hermitian Matrix as a Sum of Real Symmetric Matrix and a Real Skew-Symmetric Matrix Recall that a complex matrix is called Hermitian if $A^*=A$, where $A^*=\bar{A}^{\trans}$. Prove that every Hermitian matrix $A$ can be written as the sum \[A=B+iC,\] where $B$ is a real symmetric matrix and $C$ is a real skew-symmetric matrix. Proof. Since […]
If $ab=1$ in a Ring, then $ba=1$ when $a$ or $b$ is Not a Zero Divisor Let $R$ be a ring with $1\neq 0$. Let $a, b\in R$ such that $ab=1$. (a) Prove that if $a$ is not a zero divisor, then $ba=1$. (b) Prove that if $b$ is not a zero divisor, then $ba=1$. Definition. An element $x\in R$ is called a zero divisor if there exists a […]
Eigenvalues and Algebraic/Geometric Multiplicities of Matrix $A+cI$ Let $A$ be an $n \times n$ matrix and let $c$ be a complex number. (a) For each eigenvalue $\lambda$ of $A$, prove that $\lambda+c$ is an eigenvalue of the matrix $A+cI$, where $I$ is the identity matrix. What can you say about the eigenvectors corresponding to […]