Column Rank = Row Rank. (The Rank of a Matrix is the Same as the Rank of its Transpose)
Let $A$ be an $m\times n$ matrix. Prove that the rank of $A$ is the same as the rank of the transpose matrix $A^{\trans}$.
Hint.
Recall that the rank of a matrix $A$ is the dimension of the range of $A$.
The range of $A$ is spanned by the column vectors of the matrix […]

Union of Subspaces is a Subspace if and only if One is Included in Another
Let $W_1, W_2$ be subspaces of a vector space $V$. Then prove that $W_1 \cup W_2$ is a subspace of $V$ if and only if $W_1 \subset W_2$ or $W_2 \subset W_1$.
Proof.
If $W_1 \cup W_2$ is a subspace, then $W_1 \subset W_2$ or $W_2 \subset […]

Diagonalize the 3 by 3 Matrix if it is Diagonalizable
Determine whether the matrix
\[A=\begin{bmatrix}
0 & 1 & 0 \\
-1 &0 &0 \\
0 & 0 & 2
\end{bmatrix}\]
is diagonalizable.
If it is diagonalizable, then find the invertible matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.
How to […]

Is the Following Function $T:\R^2 \to \R^3$ a Linear Transformation?
Determine whether the function $T:\R^2 \to \R^3$ defined by
\[T\left(\, \begin{bmatrix}
x \\
y
\end{bmatrix} \,\right)
=
\begin{bmatrix}
x_+y \\
x+1 \\
3y
\end{bmatrix}\]
is a linear transformation.
Solution.
The […]

Matrices Satisfying $HF-FH=-2F$
Let $F$ and $H$ be an $n\times n$ matrices satisfying the relation
\[HF-FH=-2F.\]
(a) Find the trace of the matrix $F$.
(b) Let $\lambda$ be an eigenvalue of $H$ and let $\mathbf{v}$ be an eigenvector corresponding to $\lambda$. Show that there exists an positive integer $N$ […]

Find All 3 by 3 Reduced Row Echelon Form Matrices of Rank 1 and 2
(a) Find all $3 \times 3$ matrices which are in reduced row echelon form and have rank 1.
(b) Find all such matrices with rank 2.
Solution.
(a) Find all $3 \times 3$ matrices which are in reduced row echelon form and have rank 1.
First we look at the rank 1 case. […]

Basis of Span in Vector Space of Polynomials of Degree 2 or Less
Let $P_2$ be the vector space of all polynomials of degree $2$ or less with real coefficients.
Let
\[S=\{1+x+2x^2, \quad x+2x^2, \quad -1, \quad x^2\}\]
be the set of four vectors in $P_2$.
Then find a basis of the subspace $\Span(S)$ among the vectors in $S$.
(Linear […]

A Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring
Let $R$ be the ring of all continuous functions on the interval $[0, 2]$.
Let $I$ be the subset of $R$ defined by
\[I:=\{ f(x) \in R \mid f(1)=0\}.\]
Then prove that $I$ is an ideal of the ring $R$.
Moreover, show that $I$ is maximal and determine […]