# UC-Berkeley-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- A Diagonalizable Matrix which is Not Diagonalized by a Real Nonsingular Matrix Prove that the matrix \[A=\begin{bmatrix} 0 & 1\\ -1& 0 \end{bmatrix}\] is diagonalizable. Prove, however, that $A$ cannot be diagonalized by a real nonsingular matrix. That is, there is no real nonsingular matrix $S$ such that $S^{-1}AS$ is a diagonal […]
- A Group with a Prime Power Order Elements Has Order a Power of the Prime. Let $p$ be a prime number. Suppose that the order of each element of a finite group $G$ is a power of $p$. Then prove that $G$ is a $p$-group. Namely, the order of $G$ is a power of $p$. Hint. You may use Sylow's theorem. For a review of Sylow's theorem, please check out […]
- Normal Nilpotent Matrix is Zero Matrix A complex square ($n\times n$) matrix $A$ is called normal if \[A^* A=A A^*,\] where $A^*$ denotes the conjugate transpose of $A$, that is $A^*=\bar{A}^{\trans}$. A matrix $A$ is said to be nilpotent if there exists a positive integer $k$ such that $A^k$ is the zero […]
- The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain. Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a […]
- If Eigenvalues of a Matrix $A$ are Less than $1$, then Determinant of $I-A$ is Positive Let $A$ be an $n \times n$ matrix. Suppose that all the eigenvalues $\lambda$ of $A$ are real and satisfy $\lambda <1$. Then show that the determinant \[ \det(I-A) >0,\] where $I$ is the $n \times n$ identity matrix. We give two solutions. Solution 1. Let […]
- Galois Group of the Polynomial $x^2-2$ Let $\Q$ be the field of rational numbers. (a) Is the polynomial $f(x)=x^2-2$ separable over $\Q$? (b) Find the Galois group of $f(x)$ over $\Q$. Solution. (a) The polynomial $f(x)=x^2-2$ is separable over $\Q$ The roots of the polynomial $f(x)$ are $\pm […]
- Matrix of Linear Transformation with respect to a Basis Consisting of Eigenvectors Let $T$ be the linear transformation from the vector space $\R^2$ to $\R^2$ itself given by \[T\left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right)= \begin{bmatrix} 3x_1+x_2 \\ x_1+3x_2 \end{bmatrix}.\] (a) Verify that the […]
- Find the Rank of the Matrix $A+I$ if Eigenvalues of $A$ are $1, 2, 3, 4, 5$ Let $A$ be an $n$ by $n$ matrix with entries in complex numbers $\C$. Its only eigenvalues are $1,2,3,4,5$, possibly with multiplicities. What is the rank of the matrix $A+I_n$, where $I_n$ is the identity $n$ by $n$ matrix. (UCB-University of California, Berkeley, […]