# Pythagorean triple 2017

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Mathematics About the Number 2018 Happy New Year 2018!! Here are several mathematical facts about the number 2018. Is 2018 a Prime Number? The number 2018 is an even number, so in particular 2018 is not a prime number. The prime factorization of 2018 is \[2018=2\cdot 1009.\] Here $2$ and $1009$ are […]
- Row Equivalence of Matrices is Transitive If $A, B, C$ are three $m \times n$ matrices such that $A$ is row-equivalent to $B$ and $B$ is row-equivalent to $C$, then can we conclude that $A$ is row-equivalent to $C$? If so, then prove it. If not, then provide a counterexample. Definition (Row […]
- Determine Whether the Following Matrix Invertible. If So Find Its Inverse Matrix. Let A be the matrix \[\begin{bmatrix} 1 & -1 & 0 \\ 0 &1 &-1 \\ 0 & 0 & 1 \end{bmatrix}.\] Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse. (The Ohio State University Linear Algebra […]
- Determine Whether Matrices are in Reduced Row Echelon Form, and Find Solutions of Systems Determine whether the following augmented matrices are in reduced row echelon form, and calculate the solution sets of their associated systems of linear equations. (a) $\left[\begin{array}{rrr|r} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 6 \end{array} \right]$. (b) […]
- Linearly Dependent Module Elements / Module Homomorphism and Linearly Independency (a) Let $R$ be a commutative ring. If we regard $R$ as a left $R$-module, then prove that any two distinct elements of the module $R$ are linearly dependent. (b) Let $f: M\to M'$ be a left $R$-module homomorphism. Let $\{x_1, \dots, x_n\}$ be a subset in $M$. Prove that if the set […]
- Give the Formula for a Linear Transformation from $\R^3$ to $\R^2$ Let $T: \R^3 \to \R^2$ be a linear transformation such that \[T(\mathbf{e}_1)=\begin{bmatrix} 1 \\ 4 \end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix} 2 \\ 5 \end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix} 3 \\ 6 […]
- Irreducible Polynomial $x^3+9x+6$ and Inverse Element in Field Extension Prove that the polynomial \[f(x)=x^3+9x+6\] is irreducible over the field of rational numbers $\Q$. Let $\theta$ be a root of $f(x)$. Then find the inverse of $1+\theta$ in the field $\Q(\theta)$. Proof. Note that $f(x)$ is a monic polynomial and the prime […]
- Subgroup of Finite Index Contains a Normal Subgroup of Finite Index Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$. Proof. The group $G$ acts on the set of left cosets $G/H$ by left multiplication. Hence […]