Let $V$ be the vector space of all $2\times 2$ real matrices.
Let $S=\{A_1, A_2, A_3, A_4\}$, where
\[A_1=\begin{bmatrix}
1 & 2\\
-1& 3
\end{bmatrix}, A_2=\begin{bmatrix}
0 & -1\\
1& 4
\end{bmatrix}, A_3=\begin{bmatrix}
-1 & 0\\
1& -10
\end{bmatrix}, A_4=\begin{bmatrix}
3 & 7\\
-2& 6
\end{bmatrix}.\]
Then find a basis for the span $\Span(S)$.

Let $A$ be an $n\times n$ complex matrix.
Let $p(x)=\det(xI-A)$ be the characteristic polynomial of $A$ and write it as
\[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\]
where $a_i$ are real numbers.

Let $C$ be the companion matrix of the polynomial $p(x)$ given by
\[C=\begin{bmatrix}
0 & 0 & \dots & 0 &-a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{bmatrix}=
[\mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n, -\mathbf{a}],\]
where $\mathbf{e}_i$ is the unit vector in $\C^n$ whose $i$-th entry is $1$ and zero elsewhere, and the vector $\mathbf{a}$ is defined by
\[\mathbf{a}=\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix}.\]

Then prove that the following two statements are equivalent.

There exists a vector $\mathbf{v}\in \C^n$ such that
\[\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{n-1}\mathbf{v}\]
form a basis of $\C^n$.

There exists an invertible matrix $S$ such that $S^{-1}AS=C$.
(Namely, $A$ is similar to the companion matrix of its characteristic polynomial.)

Let $V$ be a vector space over a scalar field $K$.
Let $S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be the set of vectors in $V$, where $n \geq 2$.

Then prove that the set $S$ is linearly dependent if and only if at least one of the vectors in $S$ can be written as a linear combination of remaining vectors in $S$.

Let $G$ be a finite group of order $21$ and let $K$ be a finite group of order $49$.
Suppose that $G$ does not have a normal subgroup of order $3$.
Then determine all group homomorphisms from $G$ to $K$.

Let $a, b$ be relatively prime integers and let $p$ be a prime number.
Suppose that we have
\[a^{2^n}+b^{2^n}\equiv 0 \pmod{p}\]
for some positive integer $n$.

Let $H$ and $K$ be normal subgroups of a group $G$.
Suppose that $H < K$ and the quotient group $G/H$ is abelian.
Then prove that $G/K$ is also an abelian group.

Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of the vector space $\R^2$, where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
1
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
1 \\
-1
\end{bmatrix}.\]
The action of a linear transformation $T:\R^2\to \R^3$ on the basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given by
\begin{align*}
T(\mathbf{v}_1)=\begin{bmatrix}
2 \\
4 \\
6
\end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
0 \\
8 \\
10
\end{bmatrix}.
\end{align*}

Find the formula of $T(\mathbf{x})$, where
\[\mathbf{x}=\begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2.\]

Each of the following sets are not a subspace of the specified vector space. For each set, give a reason why it is not a subspace. (1) \[S_1=\left \{\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle | \quad x_1\geq 0 \,\right \}\]
in the vector space $\R^3$.

(2) \[S_2=\left \{\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle | \quad x_1-4x_2+5x_3=2 \,\right \}\]
in the vector space $\R^3$.

(3) \[S_3=\left \{\, \begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2 \quad \middle | \quad y=x^2 \quad \,\right \}\]
in the vector space $\R^2$.

(4) Let $P_4$ be the vector space of all polynomials of degree $4$ or less with real coefficients.
\[S_4=\{ f(x)\in P_4 \mid f(1) \text{ is an integer}\}\]
in the vector space $P_4$.

(5) \[S_5=\{ f(x)\in P_4 \mid f(1) \text{ is a rational number}\}\]
in the vector space $P_4$.

(6) Let $M_{2 \times 2}$ be the vector space of all $2\times 2$ real matrices.
\[S_6=\{ A\in M_{2\times 2} \mid \det(A) \neq 0\} \]
in the vector space $M_{2\times 2}$.

(7) \[S_7=\{ A\in M_{2\times 2} \mid \det(A)=0\} \]
in the vector space $M_{2\times 2}$.

(Linear Algebra Exam Problem, the Ohio State University)

(8) Let $C[-1, 1]$ be the vector space of all real continuous functions defined on the interval $[a, b]$.
\[S_8=\{ f(x)\in C[-2,2] \mid f(-1)f(1)=0\} \]
in the vector space $C[-2, 2]$.

(9) \[S_9=\{ f(x) \in C[-1, 1] \mid f(x)\geq 0 \text{ for all } -1\leq x \leq 1\}\]
in the vector space $C[-1, 1]$.

(10) Let $C^2[a, b]$ be the vector space of all real-valued functions $f(x)$ defined on $[a, b]$, where $f(x), f'(x)$, and $f^{\prime\prime}(x)$ are continuous on $[a, b]$. Here $f'(x), f^{\prime\prime}(x)$ are the first and second derivative of $f(x)$.
\[S_{10}=\{ f(x) \in C^2[-1, 1] \mid f^{\prime\prime}(x)+f(x)=\sin(x) \text{ for all } -1\leq x \leq 1\}\]
in the vector space $C[-1, 1]$.

(11) Let $S_{11}$ be the set of real polynomials of degree exactly $k$, where $k \geq 1$ is an integer, in the vector space $P_k$.

(12) Let $V$ be a vector space and $W \subset V$ a vector subspace. Define the subset $S_{12}$ to be the complement of $W$,
\[ V \setminus W = \{ \mathbf{v} \in V \mid \mathbf{v} \not\in W \}.\]

A complex square ($n\times n$) matrix $A$ is called normal if
\[A^* A=A A^*,\]
where $A^*$ denotes the conjugate transpose of $A$, that is $A^*=\bar{A}^{\trans}$.
A matrix $A$ is said to be nilpotent if there exists a positive integer $k$ such that $A^k$ is the zero matrix.

(a) Prove that if $A$ is both normal and nilpotent, then $A$ is the zero matrix.
You may use the fact that every normal matrix is diagonalizable.

(b) Give a proof of (a) without referring to eigenvalues and diagonalization.

(c) Let $A, B$ be $n\times n$ complex matrices. Prove that if $A$ is normal and $B$ is nilpotent such that $A+B=I$, then $A=I$, where $I$ is the $n\times n$ identity matrix.

Consider the cubic polynomial $f(x)=x^3-x+1$ in $\Q[x]$.
Let $\alpha$ be any real root of $f(x)$.
Then prove that $\sqrt{2}$ can not be written as a linear combination of $1, \alpha, \alpha^2$ with coefficients in $\Q$.

Prove that the polynomial
\[f(x)=x^3+9x+6\]
is irreducible over the field of rational numbers $\Q$.
Let $\theta$ be a root of $f(x)$.
Then find the inverse of $1+\theta$ in the field $\Q(\theta)$.

Let $G=\GL(n, \R)$ be the general linear group of degree $n$, that is, the group of all $n\times n$ invertible matrices.
Consider the subset of $G$ defined by
\[\SL(n, \R)=\{X\in \GL(n,\R) \mid \det(X)=1\}.\]
Prove that $\SL(n, \R)$ is a subgroup of $G$. Furthermore, prove that $\SL(n,\R)$ is a normal subgroup of $G$.
The subgroup $\SL(n,\R)$ is called special linear group

Let $V$ be the vector space of all $n\times n$ real matrices.
Let us fix a matrix $A\in V$.
Define a map $T: V\to V$ by
\[ T(X)=AX-XA\]
for each $X\in V$.

(a) Prove that $T:V\to V$ is a linear transformation.

(b) Let $B$ be a basis of $V$. Let $P$ be the matrix representation of $T$ with respect to $B$. Find the determinant of $P$.