Suppose that $A$ is an $n\times n$ singular matrix.
Prove that for sufficiently small $\epsilon>0$, the matrix $A-\epsilon I$ is nonsingular, where $I$ is the $n \times n$ identity matrix.

Let $n$ be a positive integer. Let $D_{2n}$ be the dihedral group of order $2n$. Using the generators and the relations, the dihedral group $D_{2n}$ is given by
\[D_{2n}=\langle r,s \mid r^n=s^2=1, sr=r^{-1}s\rangle.\]
Put $\theta=2 \pi/n$.

(a) Prove that the matrix $\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix}$ is the matrix representation of the linear transformation $T$ which rotates the $x$-$y$ plane about the origin in a counterclockwise direction by $\theta$ radians.
(b) Let $\GL_2(\R)$ be the group of all $2 \times 2$ invertible matrices with real entries. Show that the map $\rho: D_{2n} \to \GL_2(\R)$ defined on the generators by
\[ \rho(r)=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix} \text{ and }
\rho(s)=\begin{bmatrix}
0 & 1\\
1& 0
\end{bmatrix}\]
extends to a homomorphism of $D_{2n}$ into $\GL_2(\R)$.
(c) Determine whether the homomorphism $\rho$ in part (b) is injective and/or surjective.

Let $A$ and $B$ be an $n \times n$ matrices.
Suppose that all the eigenvalues of $A$ are distinct and the matrices $A$ and $B$ commute, that is $AB=BA$.

Then prove that each eigenvector of $A$ is an eigenvector of $B$.

(It could be that each eigenvector is an eigenvector for distinct eigenvalues.)

Let $A$ and $B$ be normal subgroups of a group $G$. Suppose $A\cap B=\{e\}$, where $e$ is the unit element of the group $G$.
Show that for any $a \in A$ and $b \in B$ we have $ab=ba$.

Let $V$ be an $n$-dimensional vector space over a field $K$.
Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent vectors in $V$.

Let $a$ and $b$ be two distinct positive real numbers. Define matrices
\[A:=\begin{bmatrix}
0 & a\\
a & 0
\end{bmatrix}, \,\,
B:=\begin{bmatrix}
0 & b\\
b& 0
\end{bmatrix}.\]

Find all the pairs $(\lambda, X)$, where $\lambda$ is a real number and $X$ is a non-zero real matrix satisfying the relation
\[AX+XB=\lambda X. \tag{*} \]

Let $A$ be a $4\times 4$ real symmetric matrix. Suppose that $\mathbf{v}_1=\begin{bmatrix}
-1 \\
2 \\
0 \\
-1
\end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $1$ of $A$.
Suppose that the eigenspace for the eigenvalue $2$ is $3$-dimensional.

(a) Find an orthonormal basis for the eigenspace of the eigenvalue $2$ of $A$.

Find a basis for the subspace $W$ of all vectors in $\R^4$ which are perpendicular to the columns of the matrix
\[A=\begin{bmatrix}
11 & 12 & 13 & 14 \\
21 &22 & 23 & 24 \\
31 & 32 & 33 & 34 \\
41 & 42 & 43 & 44
\end{bmatrix}.\]

Let $A$ be an $m \times n$ real matrix.
Then the kernel of $A$ is defined as $\ker(A)=\{ x\in \R^n \mid Ax=0 \}$.

The kernel is also called the null space of $A$.
Suppose that $A$ is an $m \times n$ real matrix such that $\ker(A)=0$. Prove that $A^{\trans}A$ is invertible.

Suppose that $A$ is a diagonalizable $n\times n$ matrix and has only $1$ and $-1$ as eigenvalues.
Show that $A^2=I_n$, where $I_n$ is the $n\times n$ identity matrix.