Tagged: zero matrix

Problem 305

Find a nonzero $3\times 3$ matrix $A$ such that $A^2\neq O$ and $A^3=O$, where $O$ is the $3\times 3$ zero matrix.

(Such a matrix is an example of a nilpotent matrix. See the comment after the solution.)

Problem 301

Let $A$ be a $3\times 3$ singular matrix.

Then show that there exists a nonzero $3\times 3$ matrix $B$ such that
$AB=O,$ where $O$ is the $3\times 3$ zero matrix.

Problem 271

Let $A$ be an $n\times n$ singular matrix.
Then prove that there exists a nonzero $n\times n$ matrix $B$ such that
$AB=O,$ where $O$ is the $n\times n$ zero matrix.

Problem 139

Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if
$A_1^2+A_2^2+\cdots+A_m^2=\calO,$ where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.

Problem 104

Test your understanding of basic properties of matrix operations.

There are 10 True or False Quiz Problems.

These 10 problems are very common and essential.
So make sure to understand these and don’t lose a point if any of these is your exam problems.
(These are actual exam problems at the Ohio State University.)

You can take the quiz as many times as you like.

The solutions will be given after completing all the 10 problems.
Click the View question button to see the solutions.

Problem 98

Let $A$ and $B$ be $n\times n$ matrices. Suppose that the matrix product $AB=O$, where $O$ is the $n\times n$ zero matrix.

Is it true that the matrix product with opposite order $BA$ is also the zero matrix?
If so, give a proof. If not, give a counterexample.