# Example of a Nilpotent Matrix $A$ such that $A^2\neq O$ but $A^3=O$. ## Problem 305

Find a nonzero $3\times 3$ matrix $A$ such that $A^2\neq O$ and $A^3=O$, where $O$ is the $3\times 3$ zero matrix.

(Such a matrix is an example of a nilpotent matrix. See the comment after the solution.) Add to solve later

Contents

## Solution.

For example, let $A$ be the following $3\times 3$ matrix.
$A=\begin{bmatrix} 0 & 1 & 0 \\ 0 &0 &1 \\ 0 & 0 & 0 \end{bmatrix}.$ Then $A$ is a nonzero matrix and we have
$A^2=\begin{bmatrix} 0 & 1 & 0 \\ 0 &0 &1 \\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 & 0 \\ 0 &0 &1 \\ 0 & 0 & 0 \end{bmatrix} =\begin{bmatrix} 0 & 0 & 1 \\ 0 &0 &0 \\ 0 & 0 & 0 \end{bmatrix}\neq O.$

The third power of $A$ is
$A^3=A^2A=\begin{bmatrix} 0 & 0 & 1 \\ 0 &0 &0 \\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 & 0 \\ 0 &0 &1 \\ 0 & 0 & 0 \end{bmatrix}= \begin{bmatrix} 0 & 0 & 0 \\ 0 &0 &0 \\ 0 & 0 & 0 \end{bmatrix}=O.$ Thus, the nonzero matrix $A$ satisfies the required conditions $A^2\neq O, A^3=O$.

## Comment.

A square matrix $A$ is called nilpotent if there is a non-negative integer $k$ such that $A^k$ is the zero matrix.
The smallest such an integer $k$ is called degree or index of $A$.

The matrix $A$ in the solution above gives an example of a $3\times 3$ nilpotent matrix of degree $3$. Add to solve later

### More from my site

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Linear Algebra ##### Quiz 5: Example and Non-Example of Subspaces in 3-Dimensional Space

Problem 1 Let $W$ be the subset of the $3$-dimensional vector space $\R^3$ defined by \[W=\left\{ \mathbf{x}=\begin{bmatrix} x_1 \\ x_2...

Close