# MIT-exam-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- The Number of Elements Satisfying $g^5=e$ in a Finite Group is Odd Let $G$ be a finite group. Let $S$ be the set of elements $g$ such that $g^5=e$, where $e$ is the identity element in the group $G$. Prove that the number of elements in $S$ is odd. Proof. Let $g\neq e$ be an element in the group $G$ such that $g^5=e$. As […]
- Diagonalize a 2 by 2 Matrix if Diagonalizable Determine whether the matrix \[A=\begin{bmatrix} 1 & 4\\ 2 & 3 \end{bmatrix}\] is diagonalizable. If so, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$. (The Ohio State University, Linear Algebra Final Exam […]
- The Preimage of a Normal Subgroup Under a Group Homomorphism is Normal Let $G$ and $G'$ be groups and let $f:G \to G'$ be a group homomorphism. If $H'$ is a normal subgroup of the group $G'$, then show that $H=f^{-1}(H')$ is a normal subgroup of the group $G$. Proof. We prove that $H$ is normal in $G$. (The fact that $H$ is a subgroup […]
- Two Subspaces Intersecting Trivially, and the Direct Sum of Vector Spaces. Let $V$ and $W$ be subspaces of $\R^n$ such that $V \cap W =\{\mathbf{0}\}$ and $\dim(V)+\dim(W)=n$. (a) If $\mathbf{v}+\mathbf{w}=\mathbf{0}$, where $\mathbf{v}\in V$ and $\mathbf{w}\in W$, then show that $\mathbf{v}=\mathbf{0}$ and $\mathbf{w}=\mathbf{0}$. (b) If $B_1$ is a […]
- The Sum of Subspaces is a Subspace of a Vector Space Let $V$ be a vector space over a field $K$. If $W_1$ and $W_2$ are subspaces of $V$, then prove that the subset \[W_1+W_2:=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x}\in W_1, \mathbf{y}\in W_2\}\] is a subspace of the vector space $V$. Proof. We prove the […]
- The Possibilities For the Number of Solutions of Systems of Linear Equations that Have More Equations than Unknowns Determine all possibilities for the number of solutions of each of the system of linear equations described below. (a) A system of $5$ equations in $3$ unknowns and it has $x_1=0, x_2=-3, x_3=1$ as a solution. (b) A homogeneous system of $5$ equations in $4$ unknowns and the […]
- Linearly Dependent if and only if a Vector Can be Written as a Linear Combination of Remaining Vectors Let $V$ be a vector space over a scalar field $K$. Let $S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be the set of vectors in $V$, where $n \geq 2$. Then prove that the set $S$ is linearly dependent if and only if at least one of the vectors in $S$ can be written as […]
- $p$-Group Acting on a Finite Set and the Number of Fixed Points Let $P$ be a $p$-group acting on a finite set $X$. Let \[ X^P=\{ x \in X \mid g\cdot x=x \text{ for all } g\in P \}. \] The prove that \[|X^P|\equiv |X| \pmod{p}.\] Proof. Let $\calO(x)$ denote the orbit of $x\in X$ under the action of the group $P$. Let […]