# MIT-exam-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- If the Order of a Group is Even, then the Number of Elements of Order 2 is Odd Prove that if $G$ is a finite group of even order, then the number of elements of $G$ of order $2$ is odd. Proof. First observe that for $g\in G$, \[g^2=e \iff g=g^{-1},\] where $e$ is the identity element of $G$. Thus, the identity element $e$ and the […]
- Prove that the Dot Product is Commutative: $\mathbf{v}\cdot \mathbf{w}= \mathbf{w} \cdot \mathbf{v}$ Let $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors. (a) Prove that $\mathbf{v}^\trans \mathbf{w} = \mathbf{w}^\trans \mathbf{v}$. (b) Provide an example to show that $\mathbf{v} \mathbf{w}^\trans$ is not always equal to $\mathbf{w} […]
- Fundamental Theorem of Finitely Generated Abelian Groups and its application In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem. Problem. Let $G$ be a finite abelian group of order $n$. If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]
- If Two Subsets $A, B$ of a Finite Group $G$ are Large Enough, then $G=AB$ Let $G$ be a finite group and let $A, B$ be subsets of $G$ satisfying \[|A|+|B| > |G|.\] Here $|X|$ denotes the cardinality (the number of elements) of the set $X$. Then prove that $G=AB$, where \[AB=\{ab \mid a\in A, b\in B\}.\] Proof. Since $A, B$ […]
- If the Augmented Matrix is Row-Equivalent to the Identity Matrix, is the System Consistent? Consider the following system of linear equations: \begin{align*} ax_1+bx_2 &=c\\ dx_1+ex_2 &=f\\ gx_1+hx_2 &=i. \end{align*} (a) Write down the augmented matrix. (b) Suppose that the augmented matrix is row equivalent to the identity matrix. Is the system consistent? […]
- Eigenvalues and Algebraic/Geometric Multiplicities of Matrix $A+cI$ Let $A$ be an $n \times n$ matrix and let $c$ be a complex number. (a) For each eigenvalue $\lambda$ of $A$, prove that $\lambda+c$ is an eigenvalue of the matrix $A+cI$, where $I$ is the identity matrix. What can you say about the eigenvectors corresponding to […]
- A Homomorphism from the Additive Group of Integers to Itself Let $\Z$ be the additive group of integers. Let $f: \Z \to \Z$ be a group homomorphism. Then show that there exists an integer $a$ such that \[f(n)=an\] for any integer $n$. Hint. Let us first recall the definition of a group homomorphism. A group homomorphism from a […]
- A Recursive Relationship for a Power of a Matrix Suppose that the $2 \times 2$ matrix $A$ has eigenvalues $4$ and $-2$. For each integer $n \geq 1$, there are real numbers $b_n , c_n$ which satisfy the relation \[ A^{n} = b_n A + c_n I , \] where $I$ is the identity matrix. Find $b_n$ and $c_n$ for $2 \leq n \leq 5$, and […]