Three-pieces0

Three-pieces0

LoadingAdd to solve later

Sponsored Links

probability to form a triangle


LoadingAdd to solve later

Sponsored Links

More from my site

  • Can We Reduce the Number of Vectors in a Spanning Set?Can We Reduce the Number of Vectors in a Spanning Set? Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^3$. Is it possible that $S_2=\{\mathbf{v}_1\}$ is a spanning set for $V$?   Solution. Yes, in general, $S_2$ can be a spanning set. As an […]
  • Compute Determinant of a Matrix Using Linearly Independent VectorsCompute Determinant of a Matrix Using Linearly Independent Vectors Let $A$ be a $3 \times 3$ matrix. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have \[A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 […]
  • Find a Basis and the Dimension of the Subspace of the 4-Dimensional Vector SpaceFind a Basis and the Dimension of the Subspace of the 4-Dimensional Vector Space Let $V$ be the following subspace of the $4$-dimensional vector space $\R^4$. \[V:=\left\{ \quad\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \R^4 \quad \middle| \quad x_1-x_2+x_3-x_4=0 \quad\right\}.\] Find a basis of the subspace $V$ […]
  • The Ring $\Z[\sqrt{2}]$ is a Euclidean DomainThe Ring $\Z[\sqrt{2}]$ is a Euclidean Domain Prove that the ring of integers \[\Z[\sqrt{2}]=\{a+b\sqrt{2} \mid a, b \in \Z\}\] of the field $\Q(\sqrt{2})$ is a Euclidean Domain.   Proof. First of all, it is clear that $\Z[\sqrt{2}]$ is an integral domain since it is contained in $\R$. We use the […]
  • The Range and Null Space of the Zero Transformation of Vector SpacesThe Range and Null Space of the Zero Transformation of Vector Spaces Let $U$ and $V$ be vector spaces over a scalar field $\F$. Define the map $T:U\to V$ by $T(\mathbf{u})=\mathbf{0}_V$ for each vector $\mathbf{u}\in U$. (a) Prove that $T:U\to V$ is a linear transformation. (Hence, $T$ is called the zero transformation.) (b) Determine […]
  • Summary: Possibilities for the Solution Set of a System of Linear EquationsSummary: Possibilities for the Solution Set of a System of Linear Equations In this post, we summarize theorems about the possibilities for the solution set of a system of linear equations and solve the following problems. Determine all possibilities for the solution set of the system of linear equations described below. (a) A homogeneous system of $3$ […]
  • Solving a System of Differential Equation by Finding Eigenvalues and EigenvectorsSolving a System of Differential Equation by Finding Eigenvalues and Eigenvectors Consider the system of differential equations \begin{align*} \frac{\mathrm{d} x_1(t)}{\mathrm{d}t} & = 2 x_1(t) -x_2(t) -x_3(t)\\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} & = -x_1(t)+2x_2(t) -x_3(t)\\ \frac{\mathrm{d}x_3(t)}{\mathrm{d}t} & = -x_1(t) -x_2(t) […]
  • Linear Transformation and a Basis of the Vector Space $\R^3$Linear Transformation and a Basis of the Vector Space $\R^3$ Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$. Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$. Show […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.