# idempotent-matrix

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Find a Matrix so that a Given Subset is the Null Space of the Matrix, hence it’s a Subspace Let $W$ be the subset of $\R^3$ defined by \[W=\left \{ \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\in \R^3 \quad \middle| \quad 5x_1-2x_2+x_3=0 \right \}.\] Exhibit a $1\times 3$ matrix $A$ such that $W=\calN(A)$, the null space of $A$. […]
- Every Finitely Generated Subgroup of Additive Group $\Q$ of Rational Numbers is Cyclic Let $\Q=(\Q, +)$ be the additive group of rational numbers. (a) Prove that every finitely generated subgroup of $(\Q, +)$ is cyclic. (b) Prove that $\Q$ and $\Q \times \Q$ are not isomorphic as groups. Proof. (a) Prove that every finitely generated […]
- How to Prove a Matrix is Nonsingular in 10 Seconds Using the numbers appearing in \[\pi=3.1415926535897932384626433832795028841971693993751058209749\dots\] we construct the matrix \[A=\begin{bmatrix} 3 & 14 &1592& 65358\\ 97932& 38462643& 38& 32\\ 7950& 2& 8841& 9716\\ 939937510& 5820& 974& […]
- A Simple Abelian Group if and only if the Order is a Prime Number Let $G$ be a group. (Do not assume that $G$ is a finite group.) Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number. Definition. A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]
- The Inverse Matrix of the Transpose is the Transpose of the Inverse Matrix Let $A$ be an $n\times n$ invertible matrix. Then prove the transpose $A^{\trans}$ is also invertible and that the inverse matrix of the transpose $A^{\trans}$ is the transpose of the inverse matrix $A^{-1}$. Namely, show […]
- Two Subspaces Intersecting Trivially, and the Direct Sum of Vector Spaces. Let $V$ and $W$ be subspaces of $\R^n$ such that $V \cap W =\{\mathbf{0}\}$ and $\dim(V)+\dim(W)=n$. (a) If $\mathbf{v}+\mathbf{w}=\mathbf{0}$, where $\mathbf{v}\in V$ and $\mathbf{w}\in W$, then show that $\mathbf{v}=\mathbf{0}$ and $\mathbf{w}=\mathbf{0}$. (b) If $B_1$ is a […]
- Construction of a Symmetric Matrix whose Inverse Matrix is Itself Let $\mathbf{v}$ be a nonzero vector in $\R^n$. Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$. Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by \[A=I-a\mathbf{v}\mathbf{v}^{\trans},\] where […]
- Prove that $\mathbf{v} \mathbf{v}^\trans$ is a Symmetric Matrix for any Vector $\mathbf{v}$ Let $\mathbf{v}$ be an $n \times 1$ column vector. Prove that $\mathbf{v} \mathbf{v}^\trans$ is a symmetric matrix. Definition (Symmetric Matrix). A matrix $A$ is called symmetric if $A^{\trans}=A$. In terms of entries, an $n\times n$ matrix $A=(a_{ij})$ is […]