# idempotent-matrix

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Determinant/Trace and Eigenvalues of a Matrix Let $A$ be an $n\times n$ matrix and let $\lambda_1, \dots, \lambda_n$ be its eigenvalues. Show that (1) $$\det(A)=\prod_{i=1}^n \lambda_i$$ (2) $$\tr(A)=\sum_{i=1}^n \lambda_i$$ Here $\det(A)$ is the determinant of the matrix $A$ and $\tr(A)$ is the trace of the matrix […]
- Row Equivalence of Matrices is Transitive If $A, B, C$ are three $m \times n$ matrices such that $A$ is row-equivalent to $B$ and $B$ is row-equivalent to $C$, then can we conclude that $A$ is row-equivalent to $C$? If so, then prove it. If not, then provide a counterexample. Definition (Row […]
- A Linear Transformation $T: U\to V$ cannot be Injective if $\dim(U) > \dim(V)$ Let $U$ and $V$ be finite dimensional vector spaces over a scalar field $\F$. Consider a linear transformation $T:U\to V$. Prove that if $\dim(U) > \dim(V)$, then $T$ cannot be injective (one-to-one). Hints. You may use the folowing facts. A linear […]
- Given Graphs of Characteristic Polynomial of Diagonalizable Matrices, Determine the Rank of Matrices Let $A, B, C$ are $2\times 2$ diagonalizable matrices. The graphs of characteristic polynomials of $A, B, C$ are shown below. The red graph is for $A$, the blue one for $B$, and the green one for $C$. From this information, determine the rank of the matrices $A, B,$ and […]
- Normal Subgroup Whose Order is Relatively Prime to Its Index Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$. (a) Prove that $N=\{a\in G \mid a^n=e\}$. (b) Prove that $N=\{b^m \mid b\in G\}$. Proof. Note that as $n$ and […]
- An Example of a Real Matrix that Does Not Have Real Eigenvalues Let \[A=\begin{bmatrix} a & b\\ -b& a \end{bmatrix}\] be a $2\times 2$ matrix, where $a, b$ are real numbers. Suppose that $b\neq 0$. Prove that the matrix $A$ does not have real eigenvalues. Proof. Let $\lambda$ be an arbitrary eigenvalue of […]
- Find All the Eigenvalues of Power of Matrix and Inverse Matrix Let \[A=\begin{bmatrix} 3 & -12 & 4 \\ -1 &0 &-2 \\ -1 & 5 & -1 \end{bmatrix}.\] Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$. Proof. We first determine all the eigenvalues of the matrix […]
- Given All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces \[E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […]