Every Prime Ideal of a Finite Commutative Ring is Maximal
Let $R$ be a finite commutative ring with identity $1$. Prove that every prime ideal of $R$ is a maximal ideal of $R$.
Proof.
We give two proofs. The first proof uses a result of a previous problem. The second proof is self-contained.
Proof 1.
Let $I$ be a prime ideal […]

Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation
(a) Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 0 & 1 \\
1 &0 &0 \\
2 & 1 & 1
\end{bmatrix}\]
if it exists. If you think there is no inverse matrix of $A$, then give a reason.
(b) Find a nonsingular $2\times 2$ matrix $A$ such that
\[A^3=A^2B-3A^2,\]
where […]

Equivalent Conditions to be a Unitary Matrix
A complex matrix is called unitary if $\overline{A}^{\trans} A=I$.
The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector […]

Group Homomorphisms From Group of Order 21 to Group of Order 49
Let $G$ be a finite group of order $21$ and let $K$ be a finite group of order $49$.
Suppose that $G$ does not have a normal subgroup of order $3$.
Then determine all group homomorphisms from $G$ to $K$.
Proof.
Let $e$ be the identity element of the group […]

Trace of the Inverse Matrix of a Finite Order Matrix
Let $A$ be an $n\times n$ matrix such that $A^k=I_n$, where $k\in \N$ and $I_n$ is the $n \times n$ identity matrix.
Show that the trace of $(A^{-1})^{\trans}$ is the conjugate of the trace of $A$. That is, show that […]

Nontrivial Action of a Simple Group on a Finite Set
Let $G$ be a simple group and let $X$ be a finite set.
Suppose $G$ acts nontrivially on $X$. That is, there exist $g\in G$ and $x \in X$ such that $g\cdot x \neq x$.
Then show that $G$ is a finite group and the order of $G$ divides $|X|!$.
Proof.
Since $G$ acts on $X$, it […]

Powers of a Matrix Cannot be a Basis of the Vector Space of Matrices
Let $n>1$ be a positive integer. Let $V=M_{n\times n}(\C)$ be the vector space over the complex numbers $\C$ consisting of all complex $n\times n$ matrices. The dimension of $V$ is $n^2$.
Let $A \in V$ and consider the set
\[S_A=\{I=A^0, A, A^2, \dots, A^{n^2-1}\}\]
of $n^2$ […]