Yu-Tsumura-small

LoadingAdd to solve later


LoadingAdd to solve later

More from my site

  • The Rank and Nullity of a Linear Transformation from Vector Spaces of Matrices to PolynomialsThe Rank and Nullity of a Linear Transformation from Vector Spaces of Matrices to Polynomials Let $V$ be the vector space of $2 \times 2$ matrices with real entries, and $\mathrm{P}_3$ the vector space of real polynomials of degree 3 or less. Define the linear transformation $T : V \rightarrow \mathrm{P}_3$ by \[T \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = […]
  • Find All Matrices $B$ that Commutes With a Given Matrix $A$: $AB=BA$Find All Matrices $B$ that Commutes With a Given Matrix $A$: $AB=BA$ Let \[A=\begin{bmatrix} 1 & 3\\ 2& 4 \end{bmatrix}.\] Then (a) Find all matrices \[B=\begin{bmatrix} x & y\\ z& w \end{bmatrix}\] such that $AB=BA$. (b) Use the results of part (a) to exhibit $2\times 2$ matrices $B$ and $C$ such that \[AB=BA \text{ and } […]
  • The Existence of an Element in an Abelian Group of Order the Least Common Multiple of Two ElementsThe Existence of an Element in an Abelian Group of Order the Least Common Multiple of Two Elements Let $G$ be an abelian group. Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively. Prove that there exists an element $c$ in $G$ such that the order of $c$ is the least common multiple of $m$ and $n$. Also determine whether the statement is true if $G$ is a […]
  • Every Group of Order 72 is Not a Simple GroupEvery Group of Order 72 is Not a Simple Group Prove that every finite group of order $72$ is not a simple group. Definition. A group $G$ is said to be simple if the only normal subgroups of $G$ are the trivial group $\{e\}$ or $G$ itself. Hint. Let $G$ be a group of order $72$. Use the Sylow's theorem and determine […]
  • Linear Dependent/Independent Vectors of PolynomialsLinear Dependent/Independent Vectors of Polynomials Let $p_1(x), p_2(x), p_3(x), p_4(x)$ be (real) polynomials of degree at most $3$. Which (if any) of the following two conditions is sufficient for the conclusion that these polynomials are linearly dependent? (a) At $1$ each of the polynomials has the value $0$. Namely $p_i(1)=0$ […]
  • Find the Dimension of the Subspace of Vectors Perpendicular to Given VectorsFind the Dimension of the Subspace of Vectors Perpendicular to Given Vectors Let $V$ be a subset of $\R^4$ consisting of vectors that are perpendicular to vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$, where \[\mathbf{a}=\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{b}=\begin{bmatrix} 1 \\ 1 […]
  • Idempotent Matrix and its EigenvaluesIdempotent Matrix and its Eigenvalues Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$. (a) Find a nonzero, nonidentity idempotent matrix. (b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$. (The Ohio State University, Linear Algebra Final Exam […]
  • If a Group $G$ Satisfies $abc=cba$ then $G$ is an Abelian GroupIf a Group $G$ Satisfies $abc=cba$ then $G$ is an Abelian Group Let $G$ be a group with identity element $e$. Suppose that for any non identity elements $a, b, c$ of $G$ we have \[abc=cba. \tag{*}\] Then prove that $G$ is an abelian group.   Proof. To show that $G$ is an abelian group we need to show that \[ab=ba\] for any […]

Leave a Reply

Your email address will not be published. Required fields are marked *