How to Find Eigenvalues of a Specific Matrix.

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 23

Find all eigenvalues of the following $n \times n$ matrix.

\[
A=\begin{bmatrix}
0 & 0 & \cdots & 0 &1 \\
1 & 0 & \cdots & 0 & 0\\
0 & 1 & \cdots & 0 &0\\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0&\cdots & 1& 0 \\
\end{bmatrix}
\]

LoadingAdd to solve later

Sponsored Links


Steps.

  1. Use the 1st row cofactor expansion
  2. For each smaller determinant matrix, use cofactor expansion inductively.

Solution.

We calculate the characteristic polynomial $\det(A-\lambda I)$ of $A$.

We use the cofactor expansion corresponding to the first row.
\begin{align*}
&\det(A-\lambda I)=
\begin{vmatrix}
-\lambda & 0 & \cdots & 0 &1 \\
1 & -\lambda & \cdots & 0 & 0\\
0 & 1 & \cdots & 0 &0\\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0&\cdots & 1& -\lambda \\
\end{vmatrix} \\[6pt] &=-\lambda
\begin{vmatrix}
-\lambda & 0 & \cdots & 0 &0 \\
1 & -\lambda & \cdots & 0 & 0\\
0 & 1 & \cdots & 0 &0\\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0&\cdots & 1& -\lambda \\
\end{vmatrix}
+(-1)^{n+1}
\begin{vmatrix}
1 & -\lambda & \cdots & 0 &0 \\
0 & 1 & \cdots & 0 & 0\\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & -\lambda \\
0 & 0&\cdots & 0& 1 \\
\end{vmatrix} \\
\end{align*}

Now we calculate the two determinants in the second equality separately.

The easiest way is to note that the determinant of a triangular matrix is the product of its diagonal entries.
Thus the first determinant is $(-\lambda)^{n-1}$ and the second determinant is $1$.

(If you don’t know this fact, then use the first row cofactor expansion inductively to compute the first determinant. For the second one, use the first column cofactor expansion inductively.)

Thus we obtain $\det(A-\lambda I)=(-1)^n\lambda^n+(-1)^{n+1}=(-1)^n(\lambda^n-1)$.
Therefore eigenvalues are $n$-th roots of unity $e^{2\pi i/n}$ for $i=0,1,\dots, n-1$.

Comment.

The original determinant is not in a good shape for induction but once we apply the 1st row cofactor expansion the smaller determinants obtained are better suited for induction.
When I say in the proof “inductively”, I meant that you need to use mathematical induction to prove the claim (more) rigorously.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Calculate Determinants of MatricesCalculate Determinants of Matrices Calculate the determinants of the following $n\times n$ matrices. \[A=\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 &1 \\ 1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots […]
  • Rotation Matrix in Space and its Determinant and EigenvaluesRotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by \[A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.\] (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]
  • Maximize the Dimension of the Null Space of $A-aI$Maximize the Dimension of the Null Space of $A-aI$ Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.\] Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]
  • Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam) Let \[\begin{bmatrix} 0 & 0 & 1 \\ 1 &0 &0 \\ 0 & 1 & 0 \end{bmatrix}.\] (a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers? (b) Calculate $A^{2009}$. (Princeton University, […]
  • Compute Determinant of a Matrix Using Linearly Independent VectorsCompute Determinant of a Matrix Using Linearly Independent Vectors Let $A$ be a $3 \times 3$ matrix. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have \[A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 […]
  • Find All the Eigenvalues of Power of Matrix and Inverse MatrixFind All the Eigenvalues of Power of Matrix and Inverse Matrix Let \[A=\begin{bmatrix} 3 & -12 & 4 \\ -1 &0 &-2 \\ -1 & 5 & -1 \end{bmatrix}.\] Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.   Proof. We first determine all the eigenvalues of the matrix […]
  • If 2 by 2 Matrices Satisfy $A=AB-BA$, then $A^2$ is Zero MatrixIf 2 by 2 Matrices Satisfy $A=AB-BA$, then $A^2$ is Zero Matrix Let $A, B$ be complex $2\times 2$ matrices satisfying the relation \[A=AB-BA.\] Prove that $A^2=O$, where $O$ is the $2\times 2$ zero matrix.   Hint. Find the trace of $A$. Use the Cayley-Hamilton theorem Proof. We first calculate the […]
  • How to Find the Determinant of the  $3\times 3$ MatrixHow to Find the Determinant of the $3\times 3$ Matrix Find the determinant of the matix \[A=\begin{bmatrix} 100 & 101 & 102 \\ 101 &102 &103 \\ 102 & 103 & 104 \end{bmatrix}.\]   Solution. Note that the determinant does not change if the $i$-th row is added by a scalar multiple of the $j$-th row if $i \neq […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra
If Every Trace of a Power of a Matrix is Zero, then the Matrix is Nilpotent

Let $A$ be an $n \times n$ matrix such that $\tr(A^n)=0$ for all $n \in \N$. Then prove that $A$...

Close