# Category: Linear Algebra

## Problem 131

Let $V$ be the following subspace of the $4$-dimensional vector space $\R^4$.
$V:=\left\{ \quad\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \R^4 \quad \middle| \quad x_1-x_2+x_3-x_4=0 \quad\right\}.$ Find a basis of the subspace $V$ and its dimension.

## Problem 126

Let $A$ be the following $3 \times 3$ matrix.
$A=\begin{bmatrix} 1 & 1 & -1 \\ 0 &1 &2 \\ 1 & 1 & a \end{bmatrix}.$ Determine the values of $a$ so that the matrix $A$ is nonsingular.

## Problem 125

Let $S$ be the following subset of the 3-dimensional vector space $\R^3$.
$S=\left\{ \mathbf{x}\in \R^3 \quad \middle| \quad \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, x_1, x_2, x_3 \in \Z \right\},$ where $\Z$ is the set of all integers.
Determine whether $S$ is a subspace of $\R^3$.

## Problem 121

Let $A$ be an $m \times n$ real matrix. Then the null space $\calN(A)$ of $A$ is defined by
$\calN(A)=\{ \mathbf{x}\in \R^n \mid A\mathbf{x}=\mathbf{0}_m\}.$ That is, the null space is the set of solutions to the homogeneous system $A\mathbf{x}=\mathbf{0}_m$.

Prove that the null space $\calN(A)$ is a subspace of the vector space $\R^n$.
(Note that the null space is also called the kernel of $A$.)

## Problem 120

Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are linearly dependent $n$-dimensional real vectors.

For any vector $\mathbf{v}_{r+1} \in \R^n$, determine whether the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}$ are linearly independent or linearly dependent.

## Problem 119

Let $\mathbf{a}$ and $\mathbf{b}$ be fixed vectors in $\R^3$, and let $W$ be the subset of $\R^3$ defined by
$W=\{\mathbf{x}\in \R^3 \mid \mathbf{a}^{\trans} \mathbf{x}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{x}=0\}.$

Prove that the subset $W$ is a subspace of $\R^3$.

## Problem 115

Express the vector $\mathbf{b}=\begin{bmatrix} 2 \\ 13 \\ 6 \end{bmatrix}$ as a linear combination of the vectors
$\mathbf{v}_1=\begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}, \mathbf{v}_2= \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \mathbf{v}_3= \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}.$

(The Ohio State University, Linear Algebra Exam)

## Problem 114

Let
$A=\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix} \text{ and } \mathbf{u}=\begin{bmatrix} 1\\ 0 \end{bmatrix}.$ Compute $A^{2017}\mathbf{u}$.

(The Ohio State University, Linear Algebra Exam)

## Problem 111

Let $A$ and $B$ be $n \times n$ real symmetric matrices. Prove the followings.

(a) The product $AB$ is symmetric if and only if $AB=BA$.

(b) If the product $AB$ is a diagonal matrix, then $AB=BA$.

## Problem 107

For what value(s) of $a$ does the system have nontrivial solutions?
\begin{align*}
&x_1+2x_2+x_3=0\\
&-x_1-x_2+x_3=0\\
& 3x_1+4x_2+ax_3=0.
\end{align*}

## Problem 104

Test your understanding of basic properties of matrix operations.

There are 10 True or False Quiz Problems.

These 10 problems are very common and essential.
So make sure to understand these and don’t lose a point if any of these is your exam problems.
(These are actual exam problems at the Ohio State University.)

You can take the quiz as many times as you like.

The solutions will be given after completing all the 10 problems.
Click the View question button to see the solutions.

## Problem 103

Find the rank of the following real matrix.
$\begin{bmatrix} a & 1 & 2 \\ 1 &1 &1 \\ -1 & 1 & 1-a \end{bmatrix},$ where $a$ is a real number.

(Kyoto University, Linear Algebra Exam)

## Problem 102

Determine whether the following systems of equations (or matrix equations) described below has no solution, one unique solution or infinitely many solutions and justify your answer.

(a) $\left\{ \begin{array}{c} ax+by=c \\ dx+ey=f, \end{array} \right.$ where $a,b,c, d$ are scalars satisfying $a/d=b/e=c/f$.

(b) $A \mathbf{x}=\mathbf{0}$, where $A$ is a singular matrix.

(c) A homogeneous system of $3$ equations in $4$ unknowns.

(d) $A\mathbf{x}=\mathbf{b}$, where the row-reduced echelon form of the augmented matrix $[A|\mathbf{b}]$ looks as follows:
$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 &1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$ (The Ohio State University, Linear Algebra Exam)

## Problem 101

For which choice(s) of the constant $k$ is the following matrix invertible?
$A=\begin{bmatrix} 1 & 1 & 1 \\ 1 &2 &k \\ 1 & 4 & k^2 \end{bmatrix}.$
(Johns Hopkins University, Linear Algebra Exam)

## Problem 98

Let $A$ and $B$ be $n\times n$ matrices. Suppose that the matrix product $AB=O$, where $O$ is the $n\times n$ zero matrix.

Is it true that the matrix product with opposite order $BA$ is also the zero matrix?
If so, give a proof. If not, give a counterexample.

## Problem 96

Let $A$ and $B$ be $2\times 2$ matrices.

Prove or find a counterexample for the statement that $(A-B)(A+B)=A^2-B^2$.

## Problem 93

4 multiple choice questions about possibilities for the solution set of a homogeneous system of linear equations.

The solutions will be given after completing all problems.

## Problem 91

Show that the matrix $A=\begin{bmatrix} 1 & \alpha\\ 0& 1 \end{bmatrix}$, where $\alpha$ is an element of a field $F$ of characteristic $p>0$ satisfies $A^p=I$ and the matrix is not diagonalizable over $F$ if $\alpha \neq 0$.

## Problem 87

Find a cubic polynomial
$p(x)=a+bx+cx^2+dx^3$ such that $p(1)=1, p'(1)=5, p(-1)=3$, and $p'(-1)=1$.