If Squares of Elements in a Group Lie in a Subgroup, then It is a Normal Subgroup

Purdue University Abstract Algebra Exam Problems and Solutions

Problem 469

Let $H$ be a subgroup of a group $G$.
Suppose that for each element $x\in G$, we have $x^2\in H$.

Then prove that $H$ is a normal subgroup of $G$.

(Purdue University, Abstract Algebra Qualifying Exam)

 
LoadingAdd to solve later

Sponsored Links

Proof.

To show that $H$ is a normal subgroup of $G$, we prove that
\[ghg^{-1}\in H\] for any $g\in G$ and $h\in H$.

For any $g\in G$ and $h\in H$ we have
\begin{align*}
&ghg^{-1}\\
&=g^2g^{-1}hg^{-1} &&\text{since $g=g^2g^{-1}$}\\
&=g^2g^{-1}hg^{-1}hh^{-1} &&\text{since $e=hh^{-1}$}\\
&=g^2(g^{-1}h)^2h^{-1}. \tag{*}
\end{align*}

It follows from the assumption that the elements $g^2$ and $(g^{-1}h)^2$ are in $H$.
Since $h\in H$, the inverse $h^{-1}$ is also in $H$.
Thus the expression in (*) is the product of elements in $H$, hence it is in $H$.

Thus, we have proved that $ghg^{-1}\in H$ for all $g\in G$, $h\in H$.
Therefore, the subgroup $H$ is a normal subgroup in $G$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • A Subgroup of Index a Prime $p$ of a Group of Order $p^n$ is NormalA Subgroup of Index a Prime $p$ of a Group of Order $p^n$ is Normal Let $G$ be a finite group of order $p^n$, where $p$ is a prime number and $n$ is a positive integer. Suppose that $H$ is a subgroup of $G$ with index $[G:P]=p$. Then prove that $H$ is a normal subgroup of $G$. (Michigan State University, Abstract Algebra Qualifying […]
  • Every Finite Group Having More than Two Elements Has a Nontrivial AutomorphismEvery Finite Group Having More than Two Elements Has a Nontrivial Automorphism Prove that every finite group having more than two elements has a nontrivial automorphism. (Michigan State University, Abstract Algebra Qualifying Exam)   Proof. Let $G$ be a finite group and $|G|> 2$. Case When $G$ is a Non-Abelian Group Let us first […]
  • Simple Commutative Relation on MatricesSimple Commutative Relation on Matrices Let $A$ and $B$ are $n \times n$ matrices with real entries. Assume that $A+B$ is invertible. Then show that \[A(A+B)^{-1}B=B(A+B)^{-1}A.\] (University of California, Berkeley Qualifying Exam) Proof. Let $P=A+B$. Then $B=P-A$. Using these, we express the given […]
  • True or False Quiz About a System of Linear EquationsTrue or False Quiz About a System of Linear Equations (Purdue University Linear Algebra Exam)   Which of the following statements are true? (a) A linear system of four equations in three unknowns is always inconsistent. (b) A linear system with fewer equations than unknowns must have infinitely many solutions. (c) […]
  • A Simple Abelian Group if and only if the Order is a Prime NumberA Simple Abelian Group if and only if the Order is a Prime Number Let $G$ be a group. (Do not assume that $G$ is a finite group.) Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number.   Definition. A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]
  • Given a Spanning Set of the Null Space of a Matrix, Find the RankGiven a Spanning Set of the Null Space of a Matrix, Find the Rank Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors \[\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 \\ -1 \\ 0 […]
  • Group of Order 18 is SolvableGroup of Order 18 is Solvable Let $G$ be a finite group of order $18$. Show that the group $G$ is solvable.   Definition Recall that a group $G$ is said to be solvable if $G$ has a subnormal series \[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\] such […]
  • A Matrix Equation of a Symmetric Matrix and the Limit of its SolutionA Matrix Equation of a Symmetric Matrix and the Limit of its Solution Let $A$ be a real symmetric $n\times n$ matrix with $0$ as a simple eigenvalue (that is, the algebraic multiplicity of the eigenvalue $0$ is $1$), and let us fix a vector $\mathbf{v}\in \R^n$. (a) Prove that for sufficiently small positive real $\epsilon$, the equation […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Example of Two Groups and a Subgroup of the Direct Product that is Not of the Form of Direct Product

Give an example of two groups $G$ and $H$ and a subgroup $K$ of the direct product $G\times H$ such...

Close