## Problem 367

Let $P_2$ be the vector space of all polynomials of degree $2$ or less with real coefficients.
Let
$S=\{1+x+2x^2, \quad x+2x^2, \quad -1, \quad x^2\}$ be the set of four vectors in $P_2$.

Then find a basis of the subspace $\Span(S)$ among the vectors in $S$.

(Linear Algebra Exam Problem, the Ohio State University)

## Problem 366

Let $A=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}$.

(a) Find an orthonormal basis of the null space of $A$.

(b) Find the rank of $A$.

(c) Find an orthonormal basis of the row space of $A$.

(The Ohio State University, Linear Algebra Exam Problem)

## Problem 365

Let $f(x)=\sin^2(x)$, $g(x)=\cos^2(x)$, and $h(x)=1$. These are vectors in $C[-1, 1]$.
Determine whether the set $\{f(x), \, g(x), \, h(x)\}$ is linearly dependent or linearly independent.

(The Ohio State University, Linear Algebra Midterm Exam Problem)

## Problem 364

These are True or False problems.
For each of the following statements, determine if it contains a wrong information or not.

1. Let $A$ be a $5\times 3$ matrix. Then the range of $A$ is a subspace in $\R^3$.
2. The function $f(x)=x^2+1$ is not in the vector space $C[-1,1]$ because $f(0)=1\neq 0$.
3. Since we have $\sin(x+y)=\sin(x)+\sin(y)$, the function $\sin(x)$ is a linear transformation.
4. The set
$\left\{\, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \,\right\}$ is an orthonormal set.

(Linear Algebra Exam Problem, The Ohio State University)

## Problem 363

(a) Find all the eigenvalues and eigenvectors of the matrix
$A=\begin{bmatrix} 3 & -2\\ 6& -4 \end{bmatrix}.$

(b) Let
$A=\begin{bmatrix} 1 & 0 & 3 \\ 4 &5 &6 \\ 7 & 0 & 9 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 &0 \\ 0 & 0 & 4 \end{bmatrix}.$ Then find the value of
$\det(A^2B^{-1}A^{-2}B^2).$ (For part (b) without computation, you may assume that $A$ and $B$ are invertible matrices.)

## Problem 362

Let $n$ be an integer greater than $2$ and let $\zeta=e^{2\pi i/n}$ be a primitive $n$-th root of unity. Determine the degree of the extension of $\Q(\zeta)$ over $\Q(\zeta+\zeta^{-1})$.

The subfield $\Q(\zeta+\zeta^{-1})$ is called maximal real subfield.

## Problem 361

Let
$A=\begin{bmatrix} 3 & -12 & 4 \\ -1 &0 &-2 \\ -1 & 5 & -1 \end{bmatrix}.$ Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.

## Problem 360

Let $R$ be a commutative ring and let $I_1$ and $I_2$ be comaximal ideals. That is, we have
$I_1+I_2=R.$

Then show that for any positive integers $m$ and $n$, the ideals $I_1^m$ and $I_2^n$ are comaximal.

## Problem 359

Let $P$ be a $p$-group acting on a finite set $X$.
Let
$X^P=\{ x \in X \mid g\cdot x=x \text{ for all } g\in P \}.$

The prove that
$|X^P|\equiv |X| \pmod{p}.$

## Problem 358

Let $\alpha= \sqrt[3]{2}e^{2\pi i/3}$. Prove that $x_1^2+\cdots +x_k^2=-1$ has no solutions with all $x_i\in \Q(\alpha)$ and $k\geq 1$.

## Problem 357

Let $A$ be an $n\times n$ matrix. Assume that every vector $\mathbf{x}$ in $\R^n$ is an eigenvector for some eigenvalue of $A$.
Prove that there exists $\lambda\in \R$ such that $A=\lambda I$, where $I$ is the $n\times n$ identity matrix.

## Problem 356

(a) Let $S=\{\mathbf{v}_1, \mathbf{v}_2\}$ be the set of the following vectors in $\R^4$.
$\mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$ Find an orthogonal basis of the subspace $\Span(S)$ of $\R^4$.

(b) Let $T:\R^2 \to \R^3$ be a linear transformation such that
$T(\mathbf{e}_1)=\mathbf{u}_1 \text{ and } T(\mathbf{e}_2)=\mathbf{u}_2,$ where $\{\mathbf{e}_1, \mathbf{e}_2\}$ is the standard unit vectors of $\R^2$ and
$\mathbf{u}_1=\begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix} \text{ and } \mathbf{u}_2=\begin{bmatrix} 8 \\ 2 \\ 6 \end{bmatrix}.$ Then find
$T\left(\, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \,\right).$

## Problem 355

Let $\mathbf{a}, \mathbf{b}$ be vectors in $\R^n$.

Prove the Cauchy-Schwarz inequality:
$|\mathbf{a}\cdot \mathbf{b}|\leq \|\mathbf{a}\|\,\|\mathbf{b}\|.$

## Problem 354

Let $G$ be a group. Let $a$ and $b$ be elements of $G$.
If the order of $a, b$ are $m, n$ respectively, then is it true that the order of the product $ab$ divides $mn$? If so give a proof. If not, give a counterexample.

## Problem 353

Suppose that $T: \R^2 \to \R^3$ is a linear transformation satisfying
$T\left(\, \begin{bmatrix} 1 \\ 2 \end{bmatrix}\,\right)=\begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \text{ and } T\left(\, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \,\right)=\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$ Find a general formula for
$T\left(\, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \,\right).$

(The Ohio State University, Linear Algebra Math 2568 Exam Problem)

## Problem 352

A hyperplane in $n$-dimensional vector space $\R^n$ is defined to be the set of vectors
$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}\in \R^n$ satisfying the linear equation of the form
$a_1x_1+a_2x_2+\cdots+a_nx_n=b,$ where $a_1, a_2, \dots, a_n$ (at least one of $a_1, a_2, \dots, a_n$ is nonzero) and $b$ are real numbers.
Here at least one of $a_1, a_2, \dots, a_n$ is nonzero.

Consider the hyperplane $P$ in $\R^n$ described by the linear equation
$a_1x_1+a_2x_2+\cdots+a_nx_n=0,$ where $a_1, a_2, \dots, a_n$ are some fixed real numbers and not all of these are zero.
(The constant term $b$ is zero.)

Then prove that the hyperplane $P$ is a subspace of $R^{n}$ of dimension $n-1$.

## Problem 351

Let $R$ be a commutative ring with unity.
Then show that every maximal ideal of $R$ is a prime ideal.

## Problem 350

Let $V$ be a vector space over $\R$ and let $B$ be a basis of $V$.
Let $S=\{v_1, v_2, v_3\}$ be a set of vectors in $V$. If the coordinate vectors of these vectors with respect to the basis $B$ is given as follows, then find the dimension of $V$ and the dimension of the span of $S$.
$[v_1]_B=\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, [v_2]_B=\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, [v_3]_B=\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$

## Problem 349

Let $V$ be the vector space of all $2\times 2$ real matrices.
Let $S=\{A_1, A_2, A_3, A_4\}$, where
$A_1=\begin{bmatrix} 1 & 2\\ -1& 3 \end{bmatrix}, A_2=\begin{bmatrix} 0 & -1\\ 1& 4 \end{bmatrix}, A_3=\begin{bmatrix} -1 & 0\\ 1& -10 \end{bmatrix}, A_4=\begin{bmatrix} 3 & 7\\ -2& 6 \end{bmatrix}.$ Then find a basis for the span $\Span(S)$.

## Problem 348

Let $A$ be an $n\times n$ complex matrix.
Let $p(x)=\det(xI-A)$ be the characteristic polynomial of $A$ and write it as
$p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,$ where $a_i$ are real numbers.

Let $C$ be the companion matrix of the polynomial $p(x)$ given by
$C=\begin{bmatrix} 0 & 0 & \dots & 0 &-a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{bmatrix}= [\mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n, -\mathbf{a}],$ where $\mathbf{e}_i$ is the unit vector in $\C^n$ whose $i$-th entry is $1$ and zero elsewhere, and the vector $\mathbf{a}$ is defined by
$\mathbf{a}=\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}.$

Then prove that the following two statements are equivalent.

1. There exists a vector $\mathbf{v}\in \C^n$ such that
$\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{n-1}\mathbf{v}$ form a basis of $\C^n$.
2. There exists an invertible matrix $S$ such that $S^{-1}AS=C$.
(Namely, $A$ is similar to the companion matrix of its characteristic polynomial.)