The Coordinate Vector for a Polynomial with respect to the Given Basis

Vector Space Problems and Solutions

Problem 683

Let $\mathrm{P}_3$ denote the set of polynomials of degree $3$ or less with real coefficients. Consider the ordered basis
\[B = \left\{ 1+x , 1+x^2 , x – x^2 + 2x^3 , 1 – x – x^2 \right\}.\] Write the coordinate vector for the polynomial $f(x) = -3 + 2x^3$ in terms of the basis $B$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

We will use the standard basis $C = \{ 1 , x , x^2 , x^3 \}$ to write the coordinate vectors for $f$ and each element of $B$. We then use the simpler coordinate vectors to find a solution to the equation
\begin{equation}\tag{*}
c_1 ( 1 + x ) + c_2 ( 1 + x^2 ) + c_3 ( x – x^2 + 2 x^3 ) + c_4 ( 1 – x – x^2 ) = -3 + 2 x^3 . \end{equation}

The coordinate vectors are found by writing an element as a linear sum of elements of $C$. The coefficients in the linear sum become the entries in the coordinate vector. Thus we have the following coordinate vectors:
\[[ 1 + x ]_{C} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} , \, [ 1 + x^2 ]_{C} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} , \, [ x – x^2 + 2 x^3 ]_{C} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 2 \end{bmatrix},\] \[[ 1 – x – x^2 ]_{C} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 0 \end{bmatrix} , \, [ -3 + 2 x^3 ]_{C} = \begin{bmatrix} -3 \\ 0 \\ 0 \\ 2 \end{bmatrix}.\]

Plugging these coordinate vectors into Equation (*), we get the equation
\[c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 1 \\ -1 \\ 2 \end{bmatrix} + c_4 \begin{bmatrix} 1 \\ -1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 0 \\ 2 \end{bmatrix}.\]


We can now create the augmented matrix which represents this equation:
\[ \left[\begin{array}{rrrr|r}
1 & 1 & 0 & 1 & -3 \\ 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 2 & 0 & 2
\end{array} \right].\]


Now the equation is solved by reducing the augmented matrix:
\begin{align*}
\left[\begin{array}{rrrr|r} 1 & 1 & 0 & 1 & -3 \\ 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 2 & 0 & 2 \end{array} \right] \xrightarrow{ R_2 – R_1 } \left[\begin{array}{rrrr|r} 1 & 1 & 0 & 1 & -3 \\ 0 & -1 & 1 & -2 & 3 \\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 2 & 0 & 2 \end{array} \right] \xrightarrow{ (-1) R_2 } \left[\begin{array}{rrrr|r} 1 & 1 & 0 & 1 & -3 \\ 0 & 1 & -1 & 2 & -3 \\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 2 & 0 & 2 \end{array} \right] \\[6pt] \xrightarrow[R_3 – R_2]{ R_1 – R_2 } \left[\begin{array}{rrrr|r} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 2 & -3 \\ 0 & 0 & 0 & -3 & 3 \\ 0 & 0 & 2 & 0 & 2 \end{array} \right] \xrightarrow[ \frac{1}{2} R_4]{ \left( \frac{-1}{3} \right) R_3 } \left[\begin{array}{rrrr|r} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 2 & -3 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 1 \end{array} \right] \\[6pt] \xrightarrow{ R_3 \leftrightarrow R_4 } \left[\begin{array}{rrrr|r} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 2 & -3 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{array} \right] \xrightarrow[ R_2 – 2 R_4 ]{ R_1 + R_4 } \left[\begin{array}{rrrr|r} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{array} \right] \\[6pt] \xrightarrow[R_2 + R_3]{ R_1 – R_3 } \left[\begin{array}{rrrr|r} 1 & 0 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{array} \right] .
\end{align*}


We can now read off the solution $c_1 = -2$, $c_2 = 0$ , $c_3 = 1$, and $c_4 = -1$. We can now plug these coefficients into Equation (*), yielding the equation
\[-2 (1 + x) + ( x – x^2 + 2x^3 ) – ( 1 – x – x^2 ) = -3 + 2x^3.\]

Finally, we use these coefficients to write the coordinate vector for $f$ in terms of the basis $B$:
\[ [ -3 + 2x^3 ]_{B} = \begin{bmatrix} -2 \\ 0 \\ 1 \\ -1 \end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
Find a Basis for the Range of a Linear Transformation of Vector Spaces of Matrices

Let $V$ denote the vector space of $2 \times 2$ matrices, and $W$ the vector space of $3 \times 2$...

Close