Determine Whether Given Subsets in $\R^4$ are Subspaces or Not
Problem 480
(a) Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}$ satisfying
\[2x+4y+3z+7w+1=0.\]
Determine whether $S$ is a subspace of $\R^4$. If so prove it. If not, explain why it is not a subspace.
(b) Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}$ satisfying
\[2x+4y+3z+7w=0.\]
Determine whether $S$ is a subspace of $\R^4$. If so prove it. If not, explain why it is not a subspace.
(These two problems look similar but note that the equations are different.)
(The Ohio State University, Linear Algebra Final Exam Problem)
Read solution
