# Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$ ## Problem 471

Let $A$ be a $3\times 3$ real orthogonal matrix with $\det(A)=1$.

(a) If $\frac{-1+\sqrt{3}i}{2}$ is one of the eigenvalues of $A$, then find the all the eigenvalues of $A$.

(b) Let
$A^{100}=aA^2+bA+cI,$ where $I$ is the $3\times 3$ identity matrix.
Using the Cayley-Hamilton theorem, determine $a, b, c$.

(Kyushu University, Linear Algebra Exam Problem) Add to solve later

## Solution.

### (a) Find the all the eigenvalues of $A$.

Since $A$ is a real matrix and $\frac{-1+\sqrt{3}i}{2}$ is a complex eigenvalue, its conjugate $\frac{-1-\sqrt{3}i}{2}$ is also an eigenvalue of $A$.
As $A$ is a $3\times 3$ matrix, it has one more eigenvalue $\lambda$.

Note that the product of all eigenvalues of $A$ is the determinant of $A$.
Thus, we have
$\frac{-1+\sqrt{3}i}{2} \cdot \frac{-1-\sqrt{3}i}{2}\cdot \lambda =\det(A)=1.$ Solving this, we obtain $\lambda=1$.
Therefore, the eigenvalues of $A$ are
$\frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}, 1.$

### (a) Using the Cayley-Hamilton theorem, determine $a, b, c$.

To use the Cayley-Hamilton theorem, we first need to determine the characteristic polynomial $p(t)=\det(A-tI)$ of $A$.
Since we found all the eigenvalues of $A$ in part (a) and the roots of characteristic polynomials are the eigenvalues, we know that
\begin{align*}
p(t)&=-\left(\, t-\frac{-1+\sqrt{3}i}{2} \,\right)\left(\, t-\frac{-1-\sqrt{3}i}{2} \,\right)(t-1) \tag{*}\\
&=-(t^2+t+1)(t-1)\\
&=-t^3+1.
\end{align*}
(Remark that if your definition of the characteristic polynomial is $\det(tI-A)$, then the first negative sign in (*) should be omitted.)

Then the Cayley-Hamilton theorem yields that
$P(A)=-A^3+I=O,$ where $O$ is the $3\times 3$ zero matrix.

Hence we have $A^3=I$.
We compute
\begin{align*}
A^{100}=(A^3)^{33}A=I^{33}A=IA=A.
\end{align*}

Thus, we conclude that $a=0, b=1, c=0$.

## Comment.

Observe that we did not use the assumption that $A$ is orthogonal. Add to solve later

### More from my site

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Linear Algebra ##### If $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is Orthogonal

Let $A$ be an $n\times n$ real skew-symmetric matrix. (a) Prove that the matrices $I-A$ and $I+A$ are nonsingular. (b)...

Close