Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$ Problem 471

Let $A$ be a $3\times 3$ real orthogonal matrix with $\det(A)=1$.

(a) If $\frac{-1+\sqrt{3}i}{2}$ is one of the eigenvalues of $A$, then find the all the eigenvalues of $A$.

(b) Let
$A^{100}=aA^2+bA+cI,$ where $I$ is the $3\times 3$ identity matrix.
Using the Cayley-Hamilton theorem, determine $a, b, c$.

(Kyushu University, Linear Algebra Exam Problem) Add to solve later

Solution.

(a) Find the all the eigenvalues of $A$.

Since $A$ is a real matrix and $\frac{-1+\sqrt{3}i}{2}$ is a complex eigenvalue, its conjugate $\frac{-1-\sqrt{3}i}{2}$ is also an eigenvalue of $A$.
As $A$ is a $3\times 3$ matrix, it has one more eigenvalue $\lambda$.

Note that the product of all eigenvalues of $A$ is the determinant of $A$.
Thus, we have
$\frac{-1+\sqrt{3}i}{2} \cdot \frac{-1-\sqrt{3}i}{2}\cdot \lambda =\det(A)=1.$ Solving this, we obtain $\lambda=1$.
Therefore, the eigenvalues of $A$ are
$\frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}, 1.$

(a) Using the Cayley-Hamilton theorem, determine $a, b, c$.

To use the Cayley-Hamilton theorem, we first need to determine the characteristic polynomial $p(t)=\det(A-tI)$ of $A$.
Since we found all the eigenvalues of $A$ in part (a) and the roots of characteristic polynomials are the eigenvalues, we know that
\begin{align*}
p(t)&=-\left(\, t-\frac{-1+\sqrt{3}i}{2} \,\right)\left(\, t-\frac{-1-\sqrt{3}i}{2} \,\right)(t-1) \tag{*}\\
&=-(t^2+t+1)(t-1)\\
&=-t^3+1.
\end{align*}
(Remark that if your definition of the characteristic polynomial is $\det(tI-A)$, then the first negative sign in (*) should be omitted.)

Then the Cayley-Hamilton theorem yields that
$P(A)=-A^3+I=O,$ where $O$ is the $3\times 3$ zero matrix.

Hence we have $A^3=I$.
We compute
\begin{align*}
A^{100}=(A^3)^{33}A=I^{33}A=IA=A.
\end{align*}

Thus, we conclude that $a=0, b=1, c=0$.

Comment.

Observe that we did not use the assumption that $A$ is orthogonal. Add to solve later

More from my site

You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra If $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is Orthogonal

Let $A$ be an $n\times n$ real skew-symmetric matrix. (a) Prove that the matrices $I-A$ and $I+A$ are nonsingular. (b)...

Close