Column Vectors of an Upper Triangular Matrix with Nonzero Diagonal Entries are Linearly Independent

linear combination problems and solutions in linear algebra

Problem 654

Suppose $M$ is an $n \times n$ upper-triangular matrix.

If the diagonal entries of $M$ are all non-zero, then prove that the column vectors are linearly independent.

Does the conclusion hold if we do not assume that $M$ has non-zero diagonal entries?

 
LoadingAdd to solve later

Sponsored Links


Proof.

If the diagonal entries of $M$ are all non-zero, then prove that the column vectors are linearly independent.

Let $\mathbf{x}$ denote an arbitrary column vector of length $n$, and let $\mathbf{0}$ denote the zero vector of the same size.

The columns of $M$ are linearly independent if and only if the only solution to the equation $ M \mathbf{x} = \mathbf{0} $ is the vector $\mathbf{x} = \mathbf{0}$.

Consider the upper-triangular matrix
\[M = \begin{bmatrix} m_{1, 1} & m_{1, 2} & m_{1, 3} & \cdots & m_{1, n} \\ 0 & m_{2, 2} & m_{2, 3} & \cdots & m_{2, n} \\ 0 & 0 & m_{3, 3} & \cdots & m_{3, n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & m_{n, n} \end{bmatrix}.\]


The equation $M \mathbf{x} = \mathbf{0}$ then yields a system of linear equations with $n$ equations and $n$ variables.
To find a solution, consider the augmented matrix $ \begin{bmatrix}[c|c] M & \mathbf{0} \end{bmatrix}$.

Because $M$ is upper-triangular, we can use back-substitution to solve. The bottom row of the augmented matrix gives the equation $m_{n, n} x_n = 0$.
By assumption, $m_{n, n} \neq 0$ because it is a diagonal entry. Thus we must have that $x_n=0$.


Next, the second-to-last row in the augmented matrix gives the equation $m_{n-1, n-1} x_{n-1} + m_{n-1, n} x_n = 0$. Because $x_n = 0$ and $m_{n-1, n-1} \neq 0$, we must have that $x_{n-1} = 0$.

We continue working backward in this way to see that $x_i = 0$ for all $1 \leq i \leq n$. Thus $\mathbf{x} = \mathbf{0}$, and so the columns of $M$ must be linearly independent.

Does the conclusion hold if we do not assume that $M$ has non-zero diagonal entries?

If the diagonal entries of $M$ could be non-zero, then the columns might be linearly dependent. Consider the simple example
\[M = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
linear combination problems and solutions in linear algebra
Write a Vector as a Linear Combination of Three Vectors

Write the vector $\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ as a linear combination of the vectors \[\begin{bmatrix} 1 \\...

Close