Submodule Consists of Elements Annihilated by Some Power of an Ideal

Module Theory problems and solutions

Problem 417

Let $R$ be a ring with $1$ and let $M$ be an $R$-module. Let $I$ be an ideal of $R$.
Let $M’$ be the subset of elements $a$ of $M$ that are annihilated by some power $I^k$ of the ideal $I$, where the power $k$ may depend on $a$.
Prove that $M’$ is a submodule of $M$.

 
LoadingAdd to solve later

Proof.

Let us define the subset of $M$ by
\[N_i=:\{a\in M \mid sa=0 \text{ for all } s\in I^i\}.\] That is, $N_i$ consists of elements of $M$ that are annihilated by the power $I^i$.


We claim that:

  1. the subset $N_i$ is a submodule of $M$ for each integer $i$, and
  2. we have the ascending chain
    \[N_1 \subset N_2 \subset \cdots,\] and
  3. $M’=\cup_{i=1}^{\infty} N_i$.

Once we prove these claims, the result follows from the previous problem.


Let us prove claim 1. Let $a, b\in N_i$ and let $r\in R$.
For any $s\in I^i$ we have
\begin{align*}
s(a+b)&=sa+sb=0
\end{align*}
because $a, b$ are annihilated by $s\in I^i$.
Also, we have
\begin{align*}
s(ra)=(sr)a=0
\end{align*}
since $sr\in I$ as $I$ is an ideal.
Thus, $N_i$ is a submodule of $M$.


To prove claim 2, we note the inclusion
\[I^{i+1}=I^i\cdot I\subset I^{i}.\] Thus each $a\in N_i$ is annihilated by elements in $I^{i+1}$.
Hence $N_i\subset N_{i+1}$ for any $i$, and this proves claim 2.


The claim 3 follows from the definition of the subset $M’$.


Since the union of submodules in an ascending chain of submodules is a submodule, we conclude that $M’$ is a submodule of $M$.

(For a proof of this fact, see the post “Ascending chain of submodules and union of its submodules“.)


LoadingAdd to solve later

More from my site

  • Ascending Chain of Submodules and Union of its SubmodulesAscending Chain of Submodules and Union of its Submodules Let $R$ be a ring with $1$. Let $M$ be an $R$-module. Consider an ascending chain \[N_1 \subset N_2 \subset \cdots\] of submodules of $M$. Prove that the union \[\cup_{i=1}^{\infty} N_i\] is a submodule of $M$.   Proof. To simplify the notation, let us […]
  • Annihilator of a Submodule is a 2-Sided Ideal of a RingAnnihilator of a Submodule is a 2-Sided Ideal of a Ring Let $R$ be a ring with $1$ and let $M$ be a left $R$-module. Let $S$ be a subset of $M$. The annihilator of $S$ in $R$ is the subset of the ring $R$ defined to be \[\Ann_R(S)=\{ r\in R\mid rx=0 \text{ for all } x\in S\}.\] (If $rx=0, r\in R, x\in S$, then we say $r$ annihilates […]
  • Torsion Submodule, Integral Domain, and Zero DivisorsTorsion Submodule, Integral Domain, and Zero Divisors Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$. The set of torsion elements is denoted \[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\] (a) Prove that if $R$ is an […]
  • A Module $M$ is Irreducible if and only if $M$ is isomorphic to $R/I$ for a Maximal Ideal $I$.A Module $M$ is Irreducible if and only if $M$ is isomorphic to $R/I$ for a Maximal Ideal $I$. Let $R$ be a commutative ring with $1$ and let $M$ be an $R$-module. Prove that the $R$-module $M$ is irreducible if and only if $M$ is isomorphic to $R/I$, where $I$ is a maximal ideal of $R$, as an $R$-module.     Definition (Irreducible module). An […]
  • A Module is Irreducible if and only if It is a Cyclic Module With Any Nonzero Element as GeneratorA Module is Irreducible if and only if It is a Cyclic Module With Any Nonzero Element as Generator Let $R$ be a ring with $1$. A nonzero $R$-module $M$ is called irreducible if $0$ and $M$ are the only submodules of $M$. (It is also called a simple module.) (a) Prove that a nonzero $R$-module $M$ is irreducible if and only if $M$ is a cyclic module with any nonzero element […]
  • Basic Exercise Problems in Module TheoryBasic Exercise Problems in Module Theory Let $R$ be a ring with $1$ and $M$ be a left $R$-module. (a) Prove that $0_Rm=0_M$ for all $m \in M$. Here $0_R$ is the zero element in the ring $R$ and $0_M$ is the zero element in the module $M$, that is, the identity element of the additive group $M$. To simplify the […]
  • Nilpotent Ideal and Surjective Module HomomorphismsNilpotent Ideal and Surjective Module Homomorphisms Let $R$ be a commutative ring and let $I$ be a nilpotent ideal of $R$. Let $M$ and $N$ be $R$-modules and let $\phi:M\to N$ be an $R$-module homomorphism. Prove that if the induced homomorphism $\bar{\phi}: M/IM \to N/IN$ is surjective, then $\phi$ is surjective.   […]
  • Finitely Generated Torsion Module Over an Integral Domain Has a Nonzero AnnihilatorFinitely Generated Torsion Module Over an Integral Domain Has a Nonzero Annihilator (a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module. Prove that the module $M$ has a nonzero annihilator. In other words, show that there is a nonzero element $r\in R$ such that $rm=0$ for all $m\in M$. Here $r$ does not depend on […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Module Theory
Module Theory problems and solutions
Ascending Chain of Submodules and Union of its Submodules

Let $R$ be a ring with $1$. Let $M$ be an $R$-module. Consider an ascending chain \[N_1 \subset N_2 \subset...

Close