The Quotient Ring by an Ideal of a Ring of Some Matrices is Isomorphic to $\Q$.

Problems and solutions of ring theory in abstract algebra

Problem 525

Let
\[R=\left\{\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \quad \middle | \quad a, b\in \Q \,\right\}.\] Then the usual matrix addition and multiplication make $R$ an ring.

Let
\[J=\left\{\, \begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix} \quad \middle | \quad b \in \Q \,\right\}\] be a subset of the ring $R$.

(a) Prove that the subset $J$ is an ideal of the ring $R$.

(b) Prove that the quotient ring $R/J$ is isomorphic to $\Q$.

 
LoadingAdd to solve later

Proof.

(a) Prove that the subset $J$ is an ideal of the ring $R$.

Let
\[\alpha=\begin{bmatrix}
0 & a\\
0& 0
\end{bmatrix} \text{ and } \beta=\begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix}\] be arbitrary elements in $J$ with $a, b\in \Q$.
Then since we have
\begin{align*}
\alpha-\beta=\begin{bmatrix}
0 & a-b\\
0& 0
\end{bmatrix}\in J,
\end{align*}
the subset $J$ is an additive group.


Now consider any elements
\[\rho=\begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \in R \text{ and } \gamma=\begin{bmatrix}
0 & c\\
0& 0
\end{bmatrix}\in J.\] Then we have
\begin{align*}
\rho \gamma&=\begin{bmatrix}
0 & ac\\
0& 0
\end{bmatrix}\in J \text{ and }\\[6pt] \gamma \rho &=\begin{bmatrix}
0 & ca\\
0& 0
\end{bmatrix}\in J.
\end{align*}
Thus, each element of $J$ multiplied by an element of $R$ is still in $J$.


Hence $J$ is an ideal of the ring $R$.

(b) Prove that the quotient ring $R/J$ is isomorphic to $\Q$.

Consider the map $\phi:R\to \Q$ defined by
\[\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \,\right)=a,\] for $\begin{bmatrix}
a & b\\
0& a
\end{bmatrix}\in R$.


We first show that the map $\phi$ is a ring homomorphism.
First of all, we have
\begin{align*}
\phi\left(\, \begin{bmatrix}
1 & 0\\
0& 1
\end{bmatrix} \,\right)=1.
\end{align*}
Thus $\phi$ maps the unity element of $R$ to the unity element of $\Q$.


Take
\[\begin{bmatrix}
a & b\\
0& a
\end{bmatrix}, \begin{bmatrix}
c & d\\
0& c
\end{bmatrix}\in R.\] Then we have
\begin{align*}
\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix}+\begin{bmatrix}
c & d\\
0& c
\end{bmatrix} \,\right)&=\phi\left(\, \begin{bmatrix}
a+c & b+d\\
0& a+c
\end{bmatrix} \,\right)=a+c\\[6pt] &=\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \,\right)+\phi\left(\, \begin{bmatrix}
c & d\\
0& c
\end{bmatrix} \,\right)
\end{align*}
and
\begin{align*}
\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix}\begin{bmatrix}
c & d\\
0& c
\end{bmatrix} \,\right)&=\phi\left(\, \begin{bmatrix}
ac & ad+bc\\
0& ac
\end{bmatrix} \,\right)=ac\\[6pt] &=\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \,\right)\phi\left(\, \begin{bmatrix}
c & d\\
0& c
\end{bmatrix} \,\right).
\end{align*}
It follows from these computations that $\phi:R\to \Q$ is a ring homomorphism.


Next, we determine the kernel of $\phi$.
We claim that $\ker(\phi)=J$.

If $\rho=\begin{bmatrix}
a & b\\
0& a
\end{bmatrix}\in \ker(\phi)$, then we have
\[0=\phi(\rho)=\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \,\right)=a.\]

So $\rho=\begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix}\in J$, and hence $\ker(\phi)\subset J$.


On the other hand, if $\rho=\begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix}\in J$, then it follows from the definition of $\phi$ that $\phi(\rho)=0$.
Thus, $J \subset \ker(\phi)$.
Putting these two inclusions together yields $J=\ker(\phi)$.


Observe that the homomorphism $\phi$ is surjective.
In fact, for any $a\in \Q$, we take $\begin{bmatrix}
a & 0\\
0& a
\end{bmatrix}\in R$. Then we have
\[\phi\left(\, \begin{bmatrix}
a & 0\\
0& a
\end{bmatrix} \,\right)=a.\]
In summary, $\phi:R\to \Q$ is a surjective homomorphism with kernel $J$.

It follows from the isomorphism theorem that
\[R/J\cong \Q,\] as required.

Remark.

Recall that the kernel of a ring homomorphism $\phi:R\to S$ is always an ideal of $R$.

Thus, the proof of (b) shows that $J$ is an ideal of $R$. This gives an alternative proof of part (a).


LoadingAdd to solve later

Sponsored Links

More from my site

  • A Maximal Ideal in the Ring of Continuous Functions and a Quotient RingA Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring Let $R$ be the ring of all continuous functions on the interval $[0, 2]$. Let $I$ be the subset of $R$ defined by \[I:=\{ f(x) \in R \mid f(1)=0\}.\] Then prove that $I$ is an ideal of the ring $R$. Moreover, show that $I$ is maximal and determine […]
  • Prove the Ring Isomorphism $R[x,y]/(x) \cong R[y]$Prove the Ring Isomorphism $R[x,y]/(x) \cong R[y]$ Let $R$ be a commutative ring. Consider the polynomial ring $R[x,y]$ in two variables $x, y$. Let $(x)$ be the principal ideal of $R[x,y]$ generated by $x$. Prove that $R[x, y]/(x)$ is isomorphic to $R[y]$ as a ring.   Proof. Define the map $\psi: R[x,y] \to […]
  • Determine the Quotient Ring $\Z[\sqrt{10}]/(2, \sqrt{10})$Determine the Quotient Ring $\Z[\sqrt{10}]/(2, \sqrt{10})$ Let \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}\] be an ideal of the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}.\] Then determine the quotient ring $\Z[\sqrt{10}]/P$. Is $P$ a prime ideal? Is $P$ a maximal ideal?   Solution. We […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]
  • Three Equivalent Conditions for a Ring to be a FieldThree Equivalent Conditions for a Ring to be a Field Let $R$ be a ring with $1$. Prove that the following three statements are equivalent. The ring $R$ is a field. The only ideals of $R$ are $(0)$ and $R$. Let $S$ be any ring with $1$. Then any ring homomorphism $f:R \to S$ is injective.   Proof. […]
  • $(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain.$(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain. Let $R$ be an integral domain. Then prove that the ideal $(x^3-y^2)$ is a prime ideal in the ring $R[x, y]$.   Proof. Consider the ring $R[t]$, where $t$ is a variable. Since $R$ is an integral domain, so is $R[t]$. Define the function $\Psi:R[x,y] \to R[t]$ sending […]
  • The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral DomainThe Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain. Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a […]
  • Generators of the Augmentation Ideal in a Group RingGenerators of the Augmentation Ideal in a Group Ring Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by \[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\] where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Ring theory
Problems and solutions of ring theory in abstract algebra
Is the Given Subset of The Ring of Integer Matrices an Ideal?

Let $R$ be the ring of all $2\times 2$ matrices with integer coefficients: \[R=\left\{\, \begin{bmatrix} a & b\\ c& d...

Close