Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$

Vector Space Problems and Solutions

Problem 612

Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$.

(a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ is a basis for $W$.

(b) Prove that the set $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ is a basis for $W$.

By definition of the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$, the we know that $B$ is a spanning set for $W$.
Thus, it remains to show that $B$ is linearly independent set.
Suppose that
\[c_1\sin^2(x)+c_2\cos^2(x)=0.\] This equality is true for all $x\in [-2\pi, 2\pi]$.


In particular, evaluating at $x=0$, we see that $c_2=0$.
Also, plugging in $x=\pi/2$ yields $c_1=0$.

Therefore, $\sin^2(x)$ and $\cos^2(x)$ are linearly independent, that is, $B$ is linearly independent.
As $B$ is a linearly independent spanning set, it is a basis for $W$.

Prove that the set $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.

Note that $\sin^2(x)-\cos^2(x)$ and $1$ are both in $W$ since both functions are linear combination of $\sin^2(x)$ and $\cos^2(x)$. Here, we used the trigonometric identity $1=\sin^2(x)+\cos^(x)$.

By part (a), we see that $\dim(W)=2$. So if we show that the functions $\sin^2(x)-\cos^2(x)$ and $1$ are linearly independent, then they form a basis for $W$.


We consider the coordinate vectors of these functions with respect to the basis $B$.
We have
\begin{align*}
[\sin^2(x)-\cos^2(x)]_B=\begin{bmatrix}
1
\\ -1
\end{bmatrix}
\text{ and }\\
[1]_B=[\sin^2(x)+\cos^2(x)]_B=\begin{bmatrix}
1\\ 1
\end{bmatrix}.
\end{align*}

Since we have
\begin{align*}
\begin{bmatrix}
1& 1 \\
-1& 1
\end{bmatrix}
\xrightarrow{R_2+R_1}
\begin{bmatrix}
1& 1 \\
0& 2
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_2}
\begin{bmatrix}
1& 1 \\
0& 1
\end{bmatrix}
\xrightarrow{R_1-R_1}
\begin{bmatrix}
1& 0 \\
0& 1
\end{bmatrix},
\end{align*}
the coordinate vectors are linearly independent, and hence $\sin^2(x)-\cos^2(x)$ and $1$ are linearly independent.
We conclude that $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.

(Another reasoning is that since the coordinate vectors form a basis for $\R^2$, $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.)

Comment

You may directly show that $\{\sin^2(x)-\cos^2(x), 1\}$ is linearly independent just like we did for part (a).


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
Is the Set of All Orthogonal Matrices a Vector Space?

An $n\times n$ matrix $A$ is called orthogonal if $A^{\trans}A=I$. Let $V$ be the vector space of all real $2\times...

Close