Describe the Range of the Matrix Using the Definition of the Range

Vector Space Problems and Solutions

Problem 703

Using the definition of the range of a matrix, describe the range of the matrix
\[A=\begin{bmatrix}
2 & 4 & 1 & -5 \\
1 &2 & 1 & -2 \\
1 & 2 & 0 & -3
\end{bmatrix}.\]

 
LoadingAdd to solve later

Sponsored Links

Solution.

By definition, the range $\calR(A)$ of the matrix $A$ is given by
\[\calR(A)=\left \{ \mathbf{b} \in \R^3 \quad \middle | \quad A\mathbf{x}=\mathbf{b} \text{ for some } \mathbf{x} \in \R^4 \right \}.\]

Thus, a vector $\mathbf{b}=\begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}$ in $\R^3$ is in the range $\calR(A)$ if and only if the system $A\mathbf{x}=\mathbf{b}$ is consistent.
So, let us find the conditions on $\mathbf{b}$ so that the system is consistent.


To do this, we consider the augmented matrix of the system and reduce it as follows.
\begin{align*}
\left[\begin{array}{rrrr|r}
2 & 4 & 1 & -5 & b_1\\
1 &2 & 1 & -2 & b_2 \\
1 & 2 & 0 & -3 &b_3
\end{array}\right] \xrightarrow{R_1 \leftrightarrow R_2}
\left[\begin{array}{rrrr|r}
1 &2 & 1 & -2 & b_2 \\
2 & 4 & 1 & -5 & b_1\\
1 & 2 & 0 & -3 &b_3
\end{array}\right] \xrightarrow[R_3-R_1]{R_2-2R_1}\\[6pt] \left[\begin{array}{rrrr|r}
1 &2 & 1 & -2 & b_2 \\
0 & 0 & -1 & -1 & b_1-2b_2\\
0 & 0 & 0 & -1 & b_3-b_2
\end{array}\right] \xrightarrow{-R_2}
\left[\begin{array}{rrrr|r}
1 &2 & 1 & -2 & b_2 \\
0 & 0 & 1 & 1 & -b_1+2b_2\\
0 & 0 & -1 & -1 & b_3-b_2
\end{array}\right]\\[6pt] \xrightarrow[R_3+R_2]{R_1-R_2}
\left[\begin{array}{rrrr|r}
1 &2 & 0 & -3 & b_1-b_2 \\
0 & 0 & 1 & 1 & -b_1+2b_2\\
0 & 0 & 0 & 0 & -b_1 +b_2 +b_3
\end{array}\right].
\end{align*}


Note that if the $(3, 5)$-entry $-b_1+b_2+b_3$ is not zero, then the system $A\mathbf{x}=\mathbf{0}$ is inconsistent because this implies $0=1$.
On the other hand, if $-b_1+b_2+b_3=0$, then we see that the system is consistent.
Hence, the vector $\mathbf{b}$ is in the range $\calR(A)$ if and only if $-b_1+b_2+b_3=0$.


In summary, we have
\[\calR(A)=\left\{ \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}\in \R^3 \quad \middle | \quad -b_1+b_2+b_3=0 \right \}.\]

Spanning set for the range

With a little bit additional computation, we can find the spanning set for the range as follows.


Thus, $\mathbf{b} \in \calR(A)$ if and only if
\begin{align*}
\mathbf{b}=\begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}=\begin{bmatrix}
b_2+b_3 \\
b_2 \\
b_3
\end{bmatrix}=b_2\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}+b_3\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}.
\end{align*}

In summary, we have
\begin{align*}
\calR(A)&=\left\{ \mathbf{b} \in \R^3 \quad \middle | \quad \mathbf{b}=b_2\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}+b_3\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix} \right \}\\[6pt] &=\Span\left\{ \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix} \right \}.
\end{align*}
Hence, the spanning set is
\[ \left\{ \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix} \right \}.\]


This spanning set is linearly independent, hence it’s a basis for the range.

Thus, the dimension of the range is $2$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
True or False Problems on Midterm Exam 1 at OSU Spring 2018

The following problems are True or False. Let $A$ and $B$ be $n\times n$ matrices. (a) If $AB=B$, then $B$...

Close