Find a Basis for the Range of a Linear Transformation of Vector Spaces of Matrices

Vector Space Problems and Solutions

Problem 682

Let $V$ denote the vector space of $2 \times 2$ matrices, and $W$ the vector space of $3 \times 2$ matrices. Define the linear transformation $T : V \rightarrow W$ by
\[T \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a+b & 2d \\ 2b – d & -3c \\ 2b – c & -3a \end{bmatrix}.\]

Find a basis for the range of $T$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

For any matrix $M \in V$ we can write $T(M)$ as a sum
\[T \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -3 \end{bmatrix} + b \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 2 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & -3 \\ -1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 2 \\ -1 & 0 \\ 0 & 0 \end{bmatrix}.\]

From this, we see that any element in the range of $T$ can be written as a linear sum of four elements
\[\mathbf{v}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -3 \end{bmatrix} , \quad \mathbf{v}_2 = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 2 & 0 \end{bmatrix},\] \[\mathbf{v}_3 = \begin{bmatrix} 0 & 0 \\ 0 & -3 \\ -1 & 0 \end{bmatrix} , \quad \mathbf{v}_4 = \begin{bmatrix} 0 & 2 \\ -1 & 0 \\ 0 & 0 \end{bmatrix}.\]

This means that the set $\{ \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 \}$ is a basis of $W$ as long as the four vectors are linearly independent. To check this, we will show that the coordinate vectors for the $\mathbf{v}_i$, relative to the standard basis, are linearly independent. The standard basis is composed of the matrices
\[\mathbf{e}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} , \, \mathbf{e}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} , \, \mathbf{e}_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix},\] \[\mathbf{e}_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} , \, \mathbf{e}_5 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} , \, \mathbf{e}_6 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.\]


Relative to the standard basis $B = \{ \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 , \mathbf{e}_4 , \mathbf{e}_5 , \mathbf{e}_6 \}$, the coordinate vectors for the $\mathbf{v}_i$ are
$$ [ \mathbf{v}_1 ]_{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -3 \end{bmatrix} , \, [ \mathbf{v}_2 ]_{B} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \end{bmatrix} , \, [ \mathbf{v}_3 ]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -3 \\ -1 \\ 0 \end{bmatrix} , \, [ \mathbf{v}_4 ]_{B} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} . $$

To show that these are linearly independent, we put these vectors in order and obtain the matrix
\[ \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & -3 & 0 \\ 0 & 2 & -1 & 0 \\ -3 & 0 & 0 & 0 \end{bmatrix} . \]

To show linear independence of the columns, it suffices to show that this matrix has rank $4$. To do this, we will row-reduce it.

\begin{align*}
\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & -3 & 0 \\ 0 & 2 & -1 & 0 \\ -3 & 0 & 0 & 0 \end{bmatrix} \xrightarrow[\frac{-1}{3} R_6]{ \substack{ \frac{1}{2} R_2 \\[4pt] \frac{-1}{3} R_4 } } \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{ R_1 \leftrightarrow R_6 } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \\[6pt] \xrightarrow{ R_6 – R_1 } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow[R_5 – 2 R_6 + R_4]{ R_3 – 2 R_6 + R_2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} .
\end{align*}


The four columns of this matrix are clearly linearly independent, and so it has rank $4$. Thus the original matrix has rank $4$ as well, and so the set $\{ \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 \}$ is linearly independent and is a basis of $W$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
The Matrix Exponential of a Diagonal Matrix

For a square matrix $M$, its matrix exponential is defined by \[e^M = \sum_{i=0}^\infty \frac{M^k}{k!}.\] Suppose that $M$ is a...

Close