Find a Spanning Set for the Vector Space of Skew-Symmetric Matrices
Problem 714
Let $W$ be the set of $3\times 3$ skew-symmetric matrices. Show that $W$ is a subspace of the vector space $V$ of all $3\times 3$ matrices. Then, exhibit a spanning set for $W$.
To prove that $W$ is a subspace of $V$, the $3\times 3$ zero matrix $\mathbf{0}$ is the zero vector of $V$, and since $\mathbf{0}$ is clearly skew-symmetric, $\mathbf{0}\in W$. Next, let $A,B\in W$. Then $A^{T}=-A$ and $B^{T}=-B$. Therefore,
\[
(A+B)^{T}
=A^{T}+B^{T}
=-A+(-B)
=-(A+B).
\]
Thus $A+B$ is skew-symmetric, and therefore $A+B\in W$. Next, take any $A\in W$ and $r$ in the scalar field. Then
\[
(rA)^{T}
=rA^{T}
=r(-A)
=-rA.
\]
Thus $rA$ is skew symmetric, which implies $rA\in W$. Therefore, $W$ is a subspace of $V$.
To exhibit a spanning set for $W$, first note that
\[
W=
\left\{
A\left|
A=
\begin{bmatrix}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{bmatrix}
,\;a,b,c\in\R
\right.\right\}.
\]
Let
\[
A_{1}=
\begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
,\;
A_{2}=
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{bmatrix}
,\;
A_{3}=
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{bmatrix}
.
\]
Then any $A\in W$ can be written as
\[
A=
\begin{bmatrix}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{bmatrix}
=aA_{1}+bA_{2}+cA_{3},
\]
which is a linear combination of $A_{1},A_{2},A_{3}$. Thus $\{A_{1},A_{2},A_{3}\}$ is a spanning set for $W$.
Linear Independent Vectors and the Vector Space Spanned By Them
Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$.
Let […]
Does an Extra Vector Change the Span?
Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^5$. If $\mathbf{v}_4$ is another vector in $V$, then is the set
\[S_2=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}\]
still a spanning set for […]
Can We Reduce the Number of Vectors in a Spanning Set?
Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^3$. Is it possible that $S_2=\{\mathbf{v}_1\}$ is a spanning set for $V$?
Solution.
Yes, in general, $S_2$ can be a spanning set.
As an […]
Show the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis
Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient.
Let $W$ be the following subset of $P_3$.
\[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\]
Here $p'(x)$ is the first derivative of $p(x)$ and […]
If there are More Vectors Than a Spanning Set, then Vectors are Linearly Dependent
Let $V$ be a subspace of $\R^n$.
Suppose that
\[S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}\]
is a spanning set for $V$.
Prove that any set of $m+1$ or more vectors in $V$ is linearly dependent.
We give two proofs. The essential ideas behind […]
The Subspace of Linear Combinations whose Sums of Coefficients are zero
Let $V$ be a vector space over a scalar field $K$.
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$ and consider the subset
\[W=\{a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \text{ and } […]
The Subset Consisting of the Zero Vector is a Subspace and its Dimension is Zero
Let $V$ be a subset of the vector space $\R^n$ consisting only of the zero vector of $\R^n$. Namely $V=\{\mathbf{0}\}$.
Then prove that $V$ is a subspace of $\R^n$.
Proof.
To prove that $V=\{\mathbf{0}\}$ is a subspace of $\R^n$, we check the following subspace […]
Subspaces of Symmetric, Skew-Symmetric Matrices
Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$. Prove or disprove that the following subsets of $V$ are subspaces of $V$.
(a) The set $S$ consisting of all $n\times n$ symmetric matrices.
(b) The set $T$ consisting of […]