Normalize Lengths to Obtain an Orthonormal Basis

Linear algebra problems and solutions

Problem 715

Let
\[
\mathbf{v}_{1}
=
\begin{bmatrix}
1 \\ 1
\end{bmatrix}
,\;
\mathbf{v}_{2}
=
\begin{bmatrix}
1 \\ -1
\end{bmatrix}
.
\] Let $V=\Span(\mathbf{v}_{1},\mathbf{v}_{2})$. Do $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ form an orthonormal basis for $V$?

If not, then find an orthonormal basis for $V$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

We begin by computing
\begin{align*}
\mathbf{v}_{1}\cdot\mathbf{v}_{2}
&=
\mathbf{v}_{1}^{T}\mathbf{v}_{2}
=
\begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\ -1
\end{bmatrix}
=
1\cdot 1+1\cdot -1
=
1-1
=
0,
\\
\mathbf{v}_{1}\cdot\mathbf{v}_{1}
&=
\begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\ 1
\end{bmatrix}
=
1+1
=
2,
\\
\mathbf{v}_{2}\cdot\mathbf{v}_{2}
&=
\begin{bmatrix}
1 & -1
\end{bmatrix}
\begin{bmatrix}
1 \\ -1
\end{bmatrix}
=
1+1
=
2.
\end{align*}
Since $\mathbf{v}_{1}\cdot\mathbf{v}_{2}=0$, the vectors $\mathbf{v}_1$ and $\mathbf{v}_2$ are orthogonal. Since $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are nonzero orthogonal vectors, they are linearly independent, and it follows that $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ form an orthogonal basis for $V$. However, since $\mathbf{v}_{i}\cdot\mathbf{v}_{i}=2\neq 1$ for $i=1,2$, we know that $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ do not form an orthonormal basis for $V$.


To find an orthonormal basis for $V$, note that for any scalars $a$ and $b$, $(a\mathbf{v}_{1})\cdot(b\mathbf{v}_{2})=ab(\mathbf{v}_{1}\cdot\mathbf{v}_{2})=ab\cdot 0=0$. Therefore, $a\mathbf{v}_{1}$ and $b\mathbf{v}_{2}$ will always form an orthogonal basis for $V$. All we need to do is choose $a$ and $b$ so that $a\mathbf{v}_{1}$ and $b\mathbf{v}_{2}$ form an orthonormal set. For $a$, we require
\[
1
=\|a\mathbf{v}\|=a\|\mathbf{v}\|
\] and so
\[
a=\frac{1}{\|\mathbf{v}\|}=\frac{1}{\sqrt{2}}.
\] (Note that $\|\mathbf{v}\| \neq 0$ as $\mathbf{v}\neq \mathbf{0}$. Also, note that to obtain a length 1 vector, we just needed divide the vector by its length.)
Similarly, $b=1/\sqrt{2}$. Therefore, if we define
\begin{align*}
\mathbf{w}_{1}
&=
\dfrac{1}{\sqrt{2}}
\mathbf{v}_{1}
=
\dfrac{1}{\sqrt{2}}
\begin{bmatrix}
1 \\ 1
\end{bmatrix}
,
\\
\mathbf{w}_{2}
&=
\dfrac{1}{\sqrt{2}}
\mathbf{v}_{2}
=
\dfrac{1}{\sqrt{2}}
\begin{bmatrix}
1 \\ -1
\end{bmatrix}
,
\end{align*}
then $\mathbf{w}_{1}$ and $\mathbf{w}_{2}$ form an orthonormal basis for $V$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
Find a Spanning Set for the Vector Space of Skew-Symmetric Matrices

Let $W$ be the set of $3\times 3$ skew-symmetric matrices. Show that $W$ is a subspace of the vector space...

Close