Let
\[A=\begin{bmatrix}
3 & -12 & 4 \\
-1 &0 &-2 \\
-1 & 5 & -1
\end{bmatrix}.\]
Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.

Let $A$ be an $n\times n$ matrix. Assume that every vector $\mathbf{x}$ in $\R^n$ is an eigenvector for some eigenvalue of $A$.
Prove that there exists $\lambda\in \R$ such that $A=\lambda I$, where $I$ is the $n\times n$ identity matrix.

(a) Let $S=\{\mathbf{v}_1, \mathbf{v}_2\}$ be the set of the following vectors in $\R^4$.
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix}.\]
Find an orthogonal basis of the subspace $\Span(S)$ of $\R^4$.

(b) Let $T:\R^2 \to \R^3$ be a linear transformation such that
\[T(\mathbf{e}_1)=\mathbf{u}_1 \text{ and } T(\mathbf{e}_2)=\mathbf{u}_2,\]
where $\{\mathbf{e}_1, \mathbf{e}_2\}$ is the standard unit vectors of $\R^2$ and
\[\mathbf{u}_1=\begin{bmatrix}
5 \\
1 \\
2
\end{bmatrix} \text{ and } \mathbf{u}_2=\begin{bmatrix}
8 \\
2 \\
6
\end{bmatrix}.\]
Then find
\[T\left(\, \begin{bmatrix}
3 \\
-2
\end{bmatrix} \,\right).\]

Let $G$ be a group. Let $a$ and $b$ be elements of $G$.
If the order of $a, b$ are $m, n$ respectively, then is it true that the order of the product $ab$ divides $mn$? If so give a proof. If not, give a counterexample.

A hyperplane in $n$-dimensional vector space $\R^n$ is defined to be the set of vectors
\[\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}\in \R^n\]
satisfying the linear equation of the form
\[a_1x_1+a_2x_2+\cdots+a_nx_n=b,\]
where $a_1, a_2, \dots, a_n$ (at least one of $a_1, a_2, \dots, a_n$ is nonzero) and $b$ are real numbers.
Here at least one of $a_1, a_2, \dots, a_n$ is nonzero.

Consider the hyperplane $P$ in $\R^n$ described by the linear equation
\[a_1x_1+a_2x_2+\cdots+a_nx_n=0,\]
where $a_1, a_2, \dots, a_n$ are some fixed real numbers and not all of these are zero.
(The constant term $b$ is zero.)

Then prove that the hyperplane $P$ is a subspace of $R^{n}$ of dimension $n-1$.

Let $V$ be a vector space over $\R$ and let $B$ be a basis of $V$.
Let $S=\{v_1, v_2, v_3\}$ be a set of vectors in $V$. If the coordinate vectors of these vectors with respect to the basis $B$ is given as follows, then find the dimension of $V$ and the dimension of the span of $S$.
\[[v_1]_B=\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}, [v_2]_B=\begin{bmatrix}
0 \\
1 \\
0 \\
0
\end{bmatrix}, [v_3]_B=\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}.\]

Let $V$ be the vector space of all $2\times 2$ real matrices.
Let $S=\{A_1, A_2, A_3, A_4\}$, where
\[A_1=\begin{bmatrix}
1 & 2\\
-1& 3
\end{bmatrix}, A_2=\begin{bmatrix}
0 & -1\\
1& 4
\end{bmatrix}, A_3=\begin{bmatrix}
-1 & 0\\
1& -10
\end{bmatrix}, A_4=\begin{bmatrix}
3 & 7\\
-2& 6
\end{bmatrix}.\]
Then find a basis for the span $\Span(S)$.

Let $A$ be an $n\times n$ complex matrix.
Let $p(x)=\det(xI-A)$ be the characteristic polynomial of $A$ and write it as
\[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\]
where $a_i$ are real numbers.

Let $C$ be the companion matrix of the polynomial $p(x)$ given by
\[C=\begin{bmatrix}
0 & 0 & \dots & 0 &-a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{bmatrix}=
[\mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n, -\mathbf{a}],\]
where $\mathbf{e}_i$ is the unit vector in $\C^n$ whose $i$-th entry is $1$ and zero elsewhere, and the vector $\mathbf{a}$ is defined by
\[\mathbf{a}=\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix}.\]

Then prove that the following two statements are equivalent.

There exists a vector $\mathbf{v}\in \C^n$ such that
\[\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{n-1}\mathbf{v}\]
form a basis of $\C^n$.

There exists an invertible matrix $S$ such that $S^{-1}AS=C$.
(Namely, $A$ is similar to the companion matrix of its characteristic polynomial.)

Let $V$ be a vector space over a scalar field $K$.
Let $S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be the set of vectors in $V$, where $n \geq 2$.

Then prove that the set $S$ is linearly dependent if and only if at least one of the vectors in $S$ can be written as a linear combination of remaining vectors in $S$.

Let $G$ be a finite group of order $21$ and let $K$ be a finite group of order $49$.
Suppose that $G$ does not have a normal subgroup of order $3$.
Then determine all group homomorphisms from $G$ to $K$.

Let $a, b$ be relatively prime integers and let $p$ be a prime number.
Suppose that we have
\[a^{2^n}+b^{2^n}\equiv 0 \pmod{p}\]
for some positive integer $n$.