## Problem 158

Let $C[3, 10]$ be the vector space consisting of all continuous functions defined on the interval $[3, 10]$. Consider the set
$S=\{ \sqrt{x}, x^2 \}$ in $C[3,10]$.

Show that the set $S$ is linearly independent in $C[3,10]$.

## Problem 157

Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
$Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},$ where
\begin{align*}
&p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\
&p_3(x)=2x^2, &p_4(x)=2x^2+x+1.
\end{align*}

(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.

(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.

(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

## Problem 156

Let $T: \R^3 \to \R^2$ be a linear transformation such that
$T(\mathbf{e}_1)=\begin{bmatrix} 1 \\ 4 \end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix} 2 \\ 5 \end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix} 3 \\ 6 \end{bmatrix},$ where
$\mathbf{e}_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3=\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ are the standard unit basis vectors of $\R^3$.
For any vector $\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\in \R^3$, find a formula for $T(\mathbf{x})$.

## Problem 155

Let $A$ be an $m \times n$ matrix.
Let $\calN(A)$ be the null space of $A$. Suppose that $\mathbf{u} \in \calN(A)$ and $\mathbf{v} \in \calN(A)$.
Let $\mathbf{w}=3\mathbf{u}-5\mathbf{v}$.

Then find $A\mathbf{w}$.

## Problem 154

Define the map $T:\R^2 \to \R^3$ by $T \left ( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right )=\begin{bmatrix} x_1-x_2 \\ x_1+x_2 \\ x_2 \end{bmatrix}$.

(a) Show that $T$ is a linear transformation.

(b) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for each $\mathbf{x} \in \R^2$.

(c) Describe the null space (kernel) and the range of $T$ and give the rank and the nullity of $T$.

## Problem 153

Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient.
Let $W$ be the following subset of $P_3$.
$W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.$ Here $p'(x)$ is the first derivative of $p(x)$ and $p^{\prime\prime}(x)$ is the second derivative of $p(x)$.

Show that $W$ is a subspace of $P_3$ and find a basis for $W$.

## Problem 152

Let $V$ be the vector space of all $2\times 2$ matrices, and let the subset $S$ of $V$ be defined by $S=\{A_1, A_2, A_3, A_4\}$, where
\begin{align*}
A_1=\begin{bmatrix}
1 & 2 \\
-1 & 3
A_2=\begin{bmatrix}
0 & -1 \\
1 & 4
A_3=\begin{bmatrix}
-1 & 0 \\
1 & -10
A_4=\begin{bmatrix}
3 & 7 \\
-2 & 6
\end{bmatrix}.
\end{align*}
Find a basis of the span $\Span(S)$ consisting of vectors in $S$ and find the dimension of $\Span(S)$.

## Problem 151

Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that any vector $\mathbf{v}\in V$ can be written uniquely as
$\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3,$ where $c_1, c_2, c_3$ are scalars.

## Problem 150

Show that the set
$S=\{1, 1-x, 3+4x+x^2\}$ is a basis of the vector space $P_2$ of all polynomials of degree $2$ or less.

## Problem 149

Let $G$ be a non-abelian simple group. Let $D(G)=[G,G]$ be the commutator subgroup of $G$. Show that $G=D(G)$.

## Problem 148

Let $K, N$ be normal subgroups of a group $G$. Suppose that the quotient groups $G/K$ and $G/N$ are both abelian groups.

Then show that the group
$G/(K \cap N)$ is also an abelian group.

## Problem 147

Let $G$ be a group and let $D(G)=[G,G]$ be the commutator subgroup of $G$.
Let $N$ be a subgroup of $G$.
Prove that the subgroup $N$ is normal in $G$ and $G/N$ is an abelian group if and only if $N \supset D(G)$.

## Problem 146

Let $A$ be an $n \times n$ nilpotent matrix, that is, $A^m=O$ for some positive integer $m$, where $O$ is the $n \times n$ zero matrix.

Prove that $A$ is a singular matrix and also prove that $I-A, I+A$ are both nonsingular matrices, where $I$ is the $n\times n$ identity matrix.

## Problem 145

Let $G$ be a finite group of order $n$ and let $m$ be an integer that is relatively prime to $n=|G|$. Show that for any $a\in G$, there exists a unique element $b\in G$ such that
$b^m=a.$

## Problem 144

Let $G$ and $H$ be groups and let $f:G \to K$ be a group homomorphism. Prove that the homomorphism $f$ is injective if and only if the kernel is trivial, that is, $\ker(f)=\{e\}$, where $e$ is the identity element of $G$.

## Problem 143

Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$. Prove or disprove that the following subsets of $V$ are subspaces of $V$.

(a) The set $S$ consisting of all $n\times n$ symmetric matrices.

(b) The set $T$ consisting of all $n \times n$ skew-symmetric matrices.

(c) The set $U$ consisting of all $n\times n$ nonsingular matrices.

## Problem 142

Let $T:\R^2 \to \R^3$ be a linear transformation such that $T(\mathbf{e}_1)=\mathbf{u}_1$ and $T(\mathbf{e}_2)=\mathbf{u}_2$, where $\mathbf{e}_1=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{e}_2=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are unit vectors of $\R^2$ and
$\mathbf{u}_1= \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2=\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$ Then find $T\left(\begin{bmatrix} 3 \\ -2 \end{bmatrix}\right)$.

## Problem 141

Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$.
Let $\mathbf{u}_{n+1}\in V$. Show that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n, \mathbf{u}_{n+1}$ are linearly independent if and only if $\mathbf{u}_{n+1} \not \in U$.

## Problem 140

Let $A$ be an $m\times n$ matrix. The nullspace of $A$ is denoted by $\calN(A)$.
The dimension of the nullspace of $A$ is called the nullity of $A$.
Prove the followings.

(a) $\calN(A)=\calN(A^{\trans}A)$.

(b) $\rk(A)=\rk(A^{\trans}A)$.

## Problem 139

Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if
$A_1^2+A_2^2+\cdots+A_m^2=\calO,$ where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.