Assume $Z(S_n)$ has a non-identity element $\sigma$.

Then there exist numbers $i$ and $j$, $i\neq j$, such that $\sigma(i)=j$

Since $n\geq 3$ there exists another number $k$.

Let $\tau=( i k)\in S_n$ and find a contradiction.

Proof.

Seeking a contradiction, assume that the center $Z(S_n)$ is non-trivial.
Then there exists a non-identity element $\sigma \in Z(G)$.

Since $\sigma$ is a non-identity element, there exist numbers $i$ and $j$, $i\neq j$, such that $\sigma(i)=j$.

Now by assumption $n \geq 3$, there exists another number $k$ that is different from $i$ and $j$. Let us consider the transposition $\tau=(i k)\in S_n$.
Then we have
\begin{align*}
\tau \sigma (i)&=\tau (j)=j \\
\sigma \tau (i) &= \sigma (k) \neq j
\end{align*}
since $\sigma(i)=j$ and $\sigma$ is bijective.

Thus $\tau \sigma \neq \sigma \tau$ but this contradicts that $\sigma \in Z(S_n)$.
Therefore $Z(S_n)$, $n \geq 3$, must be trivial.

Equivalent Definitions of Characteristic Subgroups. Center is Characteristic.
Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$.
(a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$.
(b) Prove that the center […]

The Index of the Center of a Non-Abelian $p$-Group is Divisible by $p^2$
Let $p$ be a prime number.
Let $G$ be a non-abelian $p$-group.
Show that the index of the center of $G$ is divisible by $p^2$.
Proof.
Suppose the order of the group $G$ is $p^a$, for some $a \in \Z$.
Let $Z(G)$ be the center of $G$. Since $Z(G)$ is a subgroup of $G$, the order […]

Group of Order $pq$ is Either Abelian or the Center is Trivial
Let $G$ be a group of order $|G|=pq$, where $p$ and $q$ are (not necessarily distinct) prime numbers.
Then show that $G$ is either abelian group or the center $Z(G)=1$.
Hint.
Use the result of the problem "If the Quotient by the Center is Cyclic, then the Group is […]

A Group of Order the Square of a Prime is Abelian
Suppose the order of a group $G$ is $p^2$, where $p$ is a prime number.
Show that
(a) the group $G$ is an abelian group, and
(b) the group $G$ is isomorphic to either $\Zmod{p^2}$ or $\Zmod{p} \times \Zmod{p}$ without using the fundamental theorem of abelian […]

If the Quotient by the Center is Cyclic, then the Group is Abelian
Let $Z(G)$ be the center of a group $G$.
Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian.
Steps.
Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$.
Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$.
Using […]

Order of Product of Two Elements in a Group
Let $G$ be a group. Let $a$ and $b$ be elements of $G$.
If the order of $a, b$ are $m, n$ respectively, then is it true that the order of the product $ab$ divides $mn$? If so give a proof. If not, give a counterexample.
Proof.
We claim that it is not true. As a […]

Abelian Normal subgroup, Quotient Group, and Automorphism Group
Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$.
Let $\Aut(N)$ be the group of automorphisms of $G$.
Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime.
Then prove that $N$ is contained in the center of […]

Nontrivial Action of a Simple Group on a Finite Set
Let $G$ be a simple group and let $X$ be a finite set.
Suppose $G$ acts nontrivially on $X$. That is, there exist $g\in G$ and $x \in X$ such that $g\cdot x \neq x$.
Then show that $G$ is a finite group and the order of $G$ divides $|X|!$.
Proof.
Since $G$ acts on $X$, it […]