The mathematical equations and symbols in this website is created using MathJax service.
MathJax enables us to use LaTeX code in WordPress for mathematical equations/symbols.
How to Use MathJax on WordPress
To use MathJax on WordPress, write the following code in header.php.
(I put the code just before </head >
.)
That’s it!!
<script type="text/x-mathjax-config">
MathJax.Hub.Config({ tex2jax: { inlineMath: [['$','$'], ["\\(","\\)"]] } });
</script>
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML">
</script>
<meta http-equiv="X-UA-Compatible" CONTENT="IE=EmulateIE7" />
For example,
if you type $\sin x$
in an editor, it gives $\sin x$.
\begin{align*}
\cos^2 x +\sin^ 2 x=1
\end{align*}
creates
\begin{align*}
\cos^2 x +\sin^ 2 x=1
\end{align*}
My setting with macros
Here is my current setting. The following codes include macros as well.
<script type="text/x-mathjax-config">// <![CDATA[
MathJax.Hub.Config({ tex2jax: { inlineMath: [['$','$'], ["\\(","\\)"]] },
TeX: {
Macros: {
R: "{\\mathbb R}",
N: "{\\mathbb N}",
C: "{\\mathbb C}",
Z: "{\\mathbb Z}",
Q: "{\\mathbb Q}",
SL: "{\\operatorname {SL}}",
SO: "{\\operatorname {SO}}",
GL: "{\\operatorname {GL}}",
id: "{\\mathbb {id}}",
tr: "{\\operatorname {tr}}",
trans: "{\\mathrm T}",
Span: "{\\operatorname {Span}}",
Hom: "{\\operatorname {Hom}}",
Rep: "{\\operatorname {Rep}}",
Aut: "{\\operatorname {Aut}}",
End: "{\\operatorname {End}}",
Repart: "{\\operatorname {Re}}",
Impart: "{\\operatorname {Im}}",
im: "{\\operatorname {im}}",
rk: "{\\operatorname {rank}}",
nullity: "{\\operatorname {null}}",
Stab: "{\\operatorname {Stab}}",
Zmod: ["{\\mathbb Z / #1 \\mathbb Z}",1],
bold: ["{\\bf #1}",1],
Abs: ['\\left\\lvert #2 \\right\\rvert_{\\text{#1}}', 2, ""]
}
}
});
</script>
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML">
</script>
<meta http-equiv="X-UA-Compatible" CONTENT="IE=EmulateIE7" />
Useful LaTeX code for MathJax.
Here is the list of LaTeX codes that I used in this website and I found them useful.
System of equations
Here is the LaTeX code for the system of equations.
\[
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
\]
The result is
\[
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
\]
If you don’t need the big bracket, then omit \left\{
and \right.
from the above code.
The LaTex code
\[\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\]
generates
\[\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}.
\]
Augmented matrix
By writing
\[
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 &1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array} \right]
\]
You get
\[ \left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 &1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array} \right]\]
Block matrix
To write a block matrix using MathJax, write the following LaTeX code
\[
M=
\left[\begin{array}{c|c}
A & B\\
\hline
C & D
\end{array}
\right]
\]
The result is
\[
M=
\left[\begin{array}{c|c}
A & B\\
\hline
C & D
\end{array}
\right]
\]
Matrix with fractions
When you write a matrix whose entries are fractions, you might feel the line are cramped.
So to widen the gap between lines, use \\[6pt]
instead of \\
as in the following code.
\[
A=\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\[6pt]
\frac{2}{3} &\frac{-1}{3} &\frac{-1}{3} \\[6pt]
\frac{1}{3} & \frac{1}{3} & \frac{-2}{3}
\end{bmatrix}
\]
The result is
\[
A=\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} &\frac{-1}{3} &\frac{-1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{-2}{3}
\end{bmatrix}
\]
Elementary row operations (Gauss-Jordan elimination)
To get
\[ \left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 &1 \\
0 & 1 & 2 & 3 & 5 \\
0 & -2 & 0 & -2 & 2 \\
0 & 1 & -2 & 3 & 1 \\
\end{array}\right]
\xrightarrow{\substack{R_1-R_2 \\ R_3-R_2\\R_4-R_2}}
\left[\begin{array}{rrrr|r}
1 & 0& -1 & -2 &-4 \\
0 & 1 & 2 & 3 & 5 \\
0 & 0 & 4 & 4 & 12 \\
0 & 0 & -4 & 0 & -4 \\
\end{array}\right]
\xrightarrow[\frac{-1}{4}R_4]{\frac{1}{4}R_3}
\left[\begin{array}{rrrr|r}
1 & 0& -1 & -2 &-4 \\
0 & 1 & 2 & 3 & 5 \\
0 & 0 & 1 & 1 & 3 \\
0 & 0 & 1 & 0& 1 \\
\end{array}\right] \]
write the LaTeX code
\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 &1 \\
0 & 1 & 2 & 3 & 5 \\
0 & -2 & 0 & -2 & 2 \\
0 & 1 & -2 & 3 & 1 \\
\end{array}\right]
\xrightarrow{\substack{R_1-R_2 \\ R_3-R_2\\R_4-R_2}}
\left[\begin{array}{rrrr|r}
1 & 0& -1 & -2 &-4 \\
0 & 1 & 2 & 3 & 5 \\
0 & 0 & 4 & 4 & 12 \\
0 & 0 & -4 & 0 & -4 \\
\end{array}\right]
\xrightarrow[\frac{-1}{4}R_4]{\frac{1}{4}R_3}
\left[\begin{array}{rrrr|r}
1 & 0& -1 & -2 &-4 \\
0 & 1 & 2 & 3 & 5 \\
0 & 0 & 1 & 1 & 3 \\
0 & 0 & 1 & 0& 1 \\
\end{array}\right]
Use array for tabular
The LaTeX code for the following table
\begin{array}{ |c|c|c| }
\hline
a & a^2 \pmod{5} & 2a^2 \pmod{5} \\
\hline
0 & 0 & 0 \\
1& 1 & 2 \\
2& 4 & 3 \\
3 & 4 & 3\\
4 & 1 & 2\\
\hline
\end{array}
is
\begin{array}{ |c|c|c| }
\hline
a & a^2 \pmod{5} & 2a^2 \pmod{5} \\
\hline
0 & 0 & 0 \\
1 & 1 & 2 \\
2 & 4 & 3 \\
3 & 4 & 3\\
4 & 1 & 2\\
\hline
\end{array}
Giving reasons for each line in align
To give a reason how to obtain each equality, like
\begin{align*}
f(ab)&=(ab)^2 && (\text{by definition of $f$})\\
&=(ab)(ab)\\
&=a^2 b^2 && (\text{since $G$ is abelian})\\
&=f(a)f(b) && (\text{by definition of $f$}).
\end{align*}
write the LaTex code
\begin{align*}
f(ab)&=(ab)^2 && (\text{by definition of $f$})\\
&=(ab)(ab)\\
&=a^2 b^2 && (\text{since $G$ is abelian})\\
&=f(a)f(b) && (\text{by definition of $f$}).
\end{align*}
Cases
If the values of a function depends on cases (like parity), you might want to write:
\begin{align*}
\det(A)&=1+(-1)^{n+1} \\
&= \begin{cases}
2 & \text{ if } n \text{ is odd}\\
0 & \text{ if } n \text{ is even}.
\end{cases}
\end{align*}
The following LaTex code produces the above equation with cases:
\begin{align*}
\det(A)&=1+(-1)^{n+1} \\
&= \begin{cases}
2 & \text{ if } n \text{ is odd}\\
0 & \text{ if } n \text{ is even}.
\end{cases}
Arrows
When you want to say $A$ implies $B$, and want to write $A\implies B$, then use
\implies
for the allow $\implies$.
The opposite direction arrow $\impliedby$ is given by \impliedby
.
When you want to say $A$ if and only if $B$, and want to write $A\iff B$, then use
\iff
for the allow $\iff$.
Symbols | Latex codes |
$\implies$ | \implies |
$\impliedby$ | \impliedby |
$\iff$ | \iff |
$\mapsto$ | \mapsto |
$\to$ | \to |
$\gets$ | \gets |
$\rightarrow$ | \rightarrow |
$\leftarrow$ | \leftarrow |
$\Rightarrow$ | \Rightarrow |
$\Leftarrow$ | \Leftarrow |
$\hookrightarrow$ | \hookrightarrow |
$\hookleftarrow$ | \hookleftarrow |
Second derivative
If you want to write the second derivative $f^{\prime\prime}$, then write the LaTeX code f^{\prime\prime}
.
Note that for the first derivative $f’$, the latex code f'
works but f''
produces $f”$.
The length (magnitude) of vectors
To write a length of a vector such as
\[\|\mathbf{v}\| \text{ or } \left\|\frac{a}{b}\right \|,\]
use the LateX codes
\|\mathbf{v}\|
or
\left\|\frac{a}{b}\right \|
Explanations under equations
If you want to add some explanations under an equation like
\[n=\underbrace{1+1+\cdots+1}_{\text{$n$ times}},\]
then use the Latex code
\[n=\underbrace{1+1+\cdots+1}_{\text{$n$ times}}.\]
Integral
An integral of a function
\[\int_{a}^{b} \! f(x)\,\mathrm{d}x\]
is generated by the LaTex code
\int_{a}^{b} \! f(x)\,\mathrm{d}x.
Note that \!
narrows the space between the integral sign and the function, and \,
increases the space between the function and $\mathrm{d}x$.
Crossing things out
To strike through an expression obliquely like \(\require{cancel}\)$\cancel{A}$ to cancel the expression $A$, we first need to put the code
\(\require{cancel}\)
before the formula where you want to put $\cancel{A}$.
You just need only one \(\require{cancel}\)
per page.
Then write the LaTex code \cancel{A}
.
Reference
The following website contains more useful LaTex codes for MathJax.
MathJax basic tutorial and quick reference
For LaTex symbols, check the website LaTeX:Symbols (Art of Problem Solving).