In each of the following cases, can we conclude that $A$ is invertible? If so, find an expression for $A^{-1}$ as a linear combination of positive powers of $A$. If $A$ is not invertible, explain why not.
(a) The matrix $A$ is a $3 \times 3$ matrix with eigenvalues $\lambda=i , \lambda=-i$, and $\lambda=0$.
(b) The matrix $A$ is a $3 \times 3$ matrix with eigenvalues $\lambda=i , \lambda=-i$, and $\lambda=-1$.
Suppose that the $2 \times 2$ matrix $A$ has eigenvalues $4$ and $-2$. For each integer $n \geq 1$, there are real numbers $b_n , c_n$ which satisfy the relation
\[ A^{n} = b_n A + c_n I , \]
where $I$ is the identity matrix.
Find $b_n$ and $c_n$ for $2 \leq n \leq 5$, and then find a recursive relationship to find $b_n, c_n$ for every $n \geq 1$.
Let $A$ be a singular $2\times 2$ matrix such that $\tr(A)\neq -1$ and let $I$ be the $2\times 2$ identity matrix.
Then prove that the inverse matrix of the matrix $I+A$ is given by the following formula:
\[(I+A)^{-1}=I-\frac{1}{1+\tr(A)}A.\]
Using the formula, calculate the inverse matrix of $\begin{bmatrix}
2 & 1\\
1& 2
\end{bmatrix}$.
Let $n>1$ be a positive integer. Let $V=M_{n\times n}(\C)$ be the vector space over the complex numbers $\C$ consisting of all complex $n\times n$ matrices. The dimension of $V$ is $n^2$.
Let $A \in V$ and consider the set
\[S_A=\{I=A^0, A, A^2, \dots, A^{n^2-1}\}\]
of $n^2$ elements.
Prove that the set $S_A$ cannot be a basis of the vector space $V$ for any $A\in V$.
Let $A$ be an $n\times n$ complex matrix.
Let $p(x)=\det(xI-A)$ be the characteristic polynomial of $A$ and write it as
\[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\]
where $a_i$ are real numbers.
Let $C$ be the companion matrix of the polynomial $p(x)$ given by
\[C=\begin{bmatrix}
0 & 0 & \dots & 0 &-a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{bmatrix}=
[\mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n, -\mathbf{a}],\]
where $\mathbf{e}_i$ is the unit vector in $\C^n$ whose $i$-th entry is $1$ and zero elsewhere, and the vector $\mathbf{a}$ is defined by
\[\mathbf{a}=\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix}.\]
Then prove that the following two statements are equivalent.
There exists a vector $\mathbf{v}\in \C^n$ such that
\[\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{n-1}\mathbf{v}\]
form a basis of $\C^n$.
There exists an invertible matrix $S$ such that $S^{-1}AS=C$.
(Namely, $A$ is similar to the companion matrix of its characteristic polynomial.)
Suppose that $A$ is $2\times 2$ matrix that has eigenvalues $-1$ and $3$.
Then for each positive integer $n$ find $a_n$ and $b_n$ such that
\[A^{n+1}=a_nA+b_nI,\]
where $I$ is the $2\times 2$ identity matrix.