Tagged: linear transformation

Is the Linear Transformation Between the Vector Space of 2 by 2 Matrices an Isomorphism?

Problem 528

Let $V$ denote the vector space of all real $2\times 2$ matrices.
Suppose that the linear transformation from $V$ to $V$ is given as below.
\[T(A)=\begin{bmatrix}
2 & 3\\
5 & 7
\end{bmatrix}A-A\begin{bmatrix}
2 & 3\\
5 & 7
\end{bmatrix}.\] Prove or disprove that the linear transformation $T:V\to V$ is an isomorphism.

 

Read solution

FavoriteLoadingAdd to solve later

Top 10 Popular Math Problems in 2016-2017

It’s been a year since I started this math blog!!

More than 500 problems were posted during a year (July 19th 2016-July 19th 2017).

I made a list of the 10 math problems on this blog that have the most views.

Can you solve all of them?


The level of difficulty among the top 10 problems.
【★★★】 Difficult (Final Exam Level)
【★★☆】 Standard(Midterm Exam Level)
【★☆☆】 Easy (Homework Level)
 

Read solution

FavoriteLoadingAdd to solve later

The Matrix for the Linear Transformation of the Reflection Across a Line in the Plane

Problem 498

Let $T:\R^2 \to \R^2$ be a linear transformation of the $2$-dimensional vector space $\R^2$ (the $x$-$y$-plane) to itself of the reflection across a line $y=mx$ for some $m\in \R$.

Then find the matrix representation of the linear transformation $T$ with respect to the standard basis $B=\{\mathbf{e}_1, \mathbf{e}_2\}$ of $\R^2$, where
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}.\]

 

Read solution

FavoriteLoadingAdd to solve later

Find an Orthonormal Basis of the Range of a Linear Transformation

Problem 478

Let $T:\R^2 \to \R^3$ be a linear transformation given by
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right)
=
\begin{bmatrix}
x_1-x_2 \\
x_2 \\
x_1+ x_2
\end{bmatrix}.\] Find an orthonormal basis of the range of $T$.

(The Ohio State University, Linear Algebra Final Exam Problem)

 

Read solution

FavoriteLoadingAdd to solve later

A Linear Transformation Preserves Exactly Two Lines If and Only If There are Two Real Non-Zero Eigenvalues

Problem 472

Let $T:\R^2 \to \R^2$ be a linear transformation and let $A$ be the matrix representation of $T$ with respect to the standard basis of $\R^2$.

Prove that the following two statements are equivalent.

(a) There are exactly two distinct lines $L_1, L_2$ in $\R^2$ passing through the origin that are mapped onto themselves:
\[T(L_1)=L_1 \text{ and } T(L_2)=L_2.\]

(b) The matrix $A$ has two distinct nonzero real eigenvalues.

 

Read solution

FavoriteLoadingAdd to solve later

Are Linear Transformations of Derivatives and Integrations Linearly Independent?

Problem 463

Let $W=C^{\infty}(\R)$ be the vector space of all $C^{\infty}$ real-valued functions (smooth function, differentiable for all degrees of differentiation).
Let $V$ be the vector space of all linear transformations from $W$ to $W$.
The addition and the scalar multiplication of $V$ are given by those of linear transformations.

Let $T_1, T_2, T_3$ be the elements in $V$ defined by
\begin{align*}
T_1\left(\, f(x) \,\right)&=\frac{\mathrm{d}}{\mathrm{d}x}f(x)\\[6pt] T_2\left(\, f(x) \,\right)&=\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x)\\[6pt] T_3\left(\, f(x) \,\right)&=\int_{0}^x \! f(t)\,\mathrm{d}t.
\end{align*}
Then determine whether the set $\{T_1, T_2, T_3\}$ are linearly independent or linearly dependent.

 

Read solution

FavoriteLoadingAdd to solve later

Differentiating Linear Transformation is Nilpotent

Problem 453

Let $P_n$ be the vector space of all polynomials with real coefficients of degree $n$ or less.
Consider the differentiation linear transformation $T: P_n\to P_n$ defined by
\[T\left(\, f(x) \,\right)=\frac{d}{dx}f(x).\]

(a) Consider the case $n=2$. Let $B=\{1, x, x^2\}$ be a basis of $P_2$. Find the matrix representation $A$ of the linear transformation $T$ with respect to the basis $B$.

(b) Compute $A^3$, where $A$ is the matrix obtained in part (a).

(c) If you computed $A^3$ in part (b) directly, then is there any theoretical explanation of your result?

(d) Now we consider the general case. Let $B$ be any basis of the vector space of $P_n$ and let $A$ be the matrix representation of the linear transformation $T$ with respect to the basis $B$.
Prove that without any calculation that the matrix $A$ is nilpotent.

 

Read solution

FavoriteLoadingAdd to solve later

Null Space, Nullity, Range, Rank of a Projection Linear Transformation

Problem 450

Let $\mathbf{u}=\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$ and $T:\R^3 \to \R^3$ be the linear transformation
\[T(\mathbf{x})=\proj_{\mathbf{u}}\mathbf{x}=\left(\, \frac{\mathbf{u}\cdot \mathbf{x}}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}.\]

(a) Calculate the null space $\calN(T)$, a basis for $\calN(T)$ and nullity of $T$.

(b) Only by using part (a) and no other calculations, find $\det(A)$, where $A$ is the matrix representation of $T$ with respect to the standard basis of $\R^3$.

(c) Calculate the range $\calR(T)$, a basis for $\calR(T)$ and the rank of $T$.

(d) Calculate the matrix $A$ representing $T$ with respect to the standard basis for $\R^3$.

(e) Let
\[B=\left\{\, \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \,\right\}\] be a basis for $\R^3$.
Calculate the coordinates of $\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}$ with respect to $B$.

(The Ohio State University, Linear Algebra Exam Problem)

 

Read solution

FavoriteLoadingAdd to solve later

Subspace Spanned By Cosine and Sine Functions

Problem 435

Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$.
Define the map $f:\R^2 \to \calF[0, 2\pi]$ by
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta \sin x.\] We put
\[V:=\im f=\{\alpha \cos x + \beta \sin x \in \calF[0, 2\pi] \mid \alpha, \beta \in \R\}.\]

(a) Prove that the map $f$ is a linear transformation.

(b) Prove that the set $\{\cos x, \sin x\}$ is a basis of the vector space $V$.

(c) Prove that the kernel is trivial, that is, $\ker f=\{\mathbf{0}\}$.
(This yields an isomorphism of $\R^2$ and $V$.)

(d) Define a map $g:V \to V$ by
\[g(\alpha \cos x + \beta \sin x):=\frac{d}{dx}(\alpha \cos x+ \beta \sin x)=\beta \cos x -\alpha \sin x.\] Prove that the map $g$ is a linear transformation.

(e) Find the matrix representation of the linear transformation $g$ with respect to the basis $\{\cos x, \sin x\}$.

(Kyoto University, Linear Algebra exam problem)

 

Read solution

FavoriteLoadingAdd to solve later

Differentiation is a Linear Transformation

Problem 433

Let $P_3$ be the vector space of polynomials of degree $3$ or less with real coefficients.

(a) Prove that the differentiation is a linear transformation. That is, prove that the map $T:P_3 \to P_3$ defined by
\[T\left(\, f(x) \,\right)=\frac{d}{dx} f(x)\] for any $f(x)\in P_3$ is a linear transformation.

(b) Let $B=\{1, x, x^2, x^3\}$ be a basis of $P_3$. With respect to the basis $B$, find the matrix representation of the linear transformation $T$ in part (a).

 

Read solution

FavoriteLoadingAdd to solve later

Restriction of a Linear Transformation on the x-z Plane is a Linear Transformation

Problem 428

Let $T:\R^3 \to \R^3$ be a linear transformation and suppose that its matrix representation with respect to the standard basis is given by the matrix
\[A=\begin{bmatrix}
1 & 0 & 2 \\
0 &3 &0 \\
4 & 0 & 5
\end{bmatrix}.\]

(a) Prove that the linear transformation $T$ sends points on the $x$-$z$ plane to points on the $x$-$z$ plane.

(b) Prove that the restriction of $T$ on the $x$-$z$ plane is a linear transformation.

(c) Find the matrix representation of the linear transformation obtained in part (b) with respect to the standard basis
\[\left\{\, \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \,\right\}\] of the $x$-$z$ plane.

 

Read solution

FavoriteLoadingAdd to solve later

Find Matrix Representation of Linear Transformation From $\R^2$ to $\R^2$

Problem 370

Let $T: \R^2 \to \R^2$ be a linear transformation such that
\[T\left(\, \begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
4 \\
1
\end{bmatrix}, T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
3 \\
2
\end{bmatrix}.\] Then find the matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for every $\mathbf{x}\in \R^2$, and find the rank and nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)
 

Read solution

FavoriteLoadingAdd to solve later

Rank and Nullity of Linear Transformation From $\R^3$ to $\R^2$

Problem 369

Let $T:\R^3 \to \R^2$ be a linear transformation such that
\[ T(\mathbf{e}_1)=\begin{bmatrix}
1 \\
0
\end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix}
0 \\
1
\end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix}
1 \\
0
\end{bmatrix},\] where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are the standard basis of $\R^3$.
Then find the rank and the nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)
 

Read solution

FavoriteLoadingAdd to solve later

Determine a Value of Linear Transformation From $\R^3$ to $\R^2$

Problem 368

Let $T$ be a linear transformation from $\R^3$ to $\R^2$ such that
\[ T\left(\, \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}\,\right) =\begin{bmatrix}
1 \\
2
\end{bmatrix} \text{ and }T\left(\, \begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}\,\right)=\begin{bmatrix}
0 \\
1
\end{bmatrix}. \] Then find $T\left(\, \begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \,\right)$.

 
(The Ohio State University, Linear Algebra Exam Problem)

Read solution

FavoriteLoadingAdd to solve later

True or False Problems of Vector Spaces and Linear Transformations

Problem 364

These are True or False problems.
For each of the following statements, determine if it contains a wrong information or not.

  1. Let $A$ be a $5\times 3$ matrix. Then the range of $A$ is a subspace in $\R^3$.
  2. The function $f(x)=x^2+1$ is not in the vector space $C[-1,1]$ because $f(0)=1\neq 0$.
  3. Since we have $\sin(x+y)=\sin(x)+\sin(y)$, the function $\sin(x)$ is a linear transformation.
  4. The set
    \[\left\{\, \begin{bmatrix}
    1 \\
    0 \\
    0
    \end{bmatrix}, \begin{bmatrix}
    0 \\
    1 \\
    1
    \end{bmatrix} \,\right\}\] is an orthonormal set.

(Linear Algebra exam problem, the Ohio State University)

 

Read solution

FavoriteLoadingAdd to solve later

Quiz 10. Find Orthogonal Basis / Find Value of Linear Transformation

Problem 356

(a) Let $S=\{\mathbf{v}_1, \mathbf{v}_2\}$ be the set of the following vectors in $\R^4$.
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix}.\] Find an orthogonal basis of the subspace $\Span(S)$ of $\R^4$.

 
(b) Let $T:\R^2 \to \R^3$ be a linear transformation such that
\[T(\mathbf{e}_1)=\mathbf{u}_1 \text{ and } T(\mathbf{e}_2)=\mathbf{u}_2,\] where $\{\mathbf{e}_1, \mathbf{e}_2\}$ is the standard unit vectors of $\R^2$ and
\[\mathbf{u}_1=\begin{bmatrix}
5 \\
1 \\
2
\end{bmatrix} \text{ and } \mathbf{u}_2=\begin{bmatrix}
8 \\
2 \\
6
\end{bmatrix}.\] Then find
\[T\left(\, \begin{bmatrix}
3 \\
-2
\end{bmatrix} \,\right).\]

 

Read solution

FavoriteLoadingAdd to solve later

Find a General Formula of a Linear Transformation From $\R^2$ to $\R^3$

Problem 353

Suppose that $T: \R^2 \to \R^3$ is a linear transformation satisfying
\[T\left(\, \begin{bmatrix}
1 \\
2
\end{bmatrix}\,\right)=\begin{bmatrix}
3 \\
4 \\
5
\end{bmatrix} \text{ and } T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}.\] Find a general formula for
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right).\]

(The Ohio State University, Linear Algebra Math 2568 Exam Problem)

 

Read solution

FavoriteLoadingAdd to solve later