Determine whether the function $T:\R^2 \to \R^3$ defined by
\[T\left(\, \begin{bmatrix}
x \\
y
\end{bmatrix} \,\right)
=
\begin{bmatrix}
x_+y \\
x+1 \\
3y
\end{bmatrix}\]
is a linear transformation.

We fix a nonzero vector $\mathbf{a}$ in $\R^3$ and define a map $T:\R^3\to \R^3$ by
\[T(\mathbf{v})=\mathbf{a}\times \mathbf{v}\]
for all $\mathbf{v}\in \R^3$.
Here the right-hand side is the cross product of $\mathbf{a}$ and $\mathbf{v}$.

(a) Prove that $T:\R^3\to \R^3$ is a linear transformation.

(b) Determine the eigenvalues and eigenvectors of $T$.

Let $\R^n$ be an inner product space with inner product $\langle \mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\trans}\mathbf{y}$ for $\mathbf{x}, \mathbf{y}\in \R^n$.

A linear transformation $T:\R^n \to \R^n$ is called orthogonal transformation if for all $\mathbf{x}, \mathbf{y}\in \R^n$, it satisfies
\[\langle T(\mathbf{x}), T(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y} \rangle.\]

Prove that if $T:\R^n\to \R^n$ is an orthogonal transformation, then $T$ is an isomorphism.

Let $U$ and $V$ be vector spaces over a scalar field $\F$.
Define the map $T:U\to V$ by $T(\mathbf{u})=\mathbf{0}_V$ for each vector $\mathbf{u}\in U$.

(a) Prove that $T:U\to V$ is a linear transformation.
(Hence, $T$ is called the zero transformation.)

(b) Determine the null space $\calN(T)$ and the range $\calR(T)$ of $T$.

Let $T:\R^3 \to \R^3$ be the linear transformation defined by the formula
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \,\right)=\begin{bmatrix}
x_1+3x_2-2x_3 \\
2x_1+3x_2 \\
x_2+x_3
\end{bmatrix}.\]

Determine whether $T$ is an isomorphism and if so find the formula for the inverse linear transformation $T^{-1}$.

Let $V$ denote the vector space of all real $2\times 2$ matrices.
Suppose that the linear transformation from $V$ to $V$ is given as below.
\[T(A)=\begin{bmatrix}
2 & 3\\
5 & 7
\end{bmatrix}A-A\begin{bmatrix}
2 & 3\\
5 & 7
\end{bmatrix}.\]
Prove or disprove that the linear transformation $T:V\to V$ is an isomorphism.

Let $T:\R^2 \to \R^2$ be a linear transformation of the $2$-dimensional vector space $\R^2$ (the $x$-$y$-plane) to itself which is the reflection across a line $y=mx$ for some $m\in \R$.

Then find the matrix representation of the linear transformation $T$ with respect to the standard basis $B=\{\mathbf{e}_1, \mathbf{e}_2\}$ of $\R^2$, where
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}.\]

Let $T:\R^2 \to \R^3$ be a linear transformation given by
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right)
=
\begin{bmatrix}
x_1-x_2 \\
x_2 \\
x_1+ x_2
\end{bmatrix}.\]
Find an orthonormal basis of the range of $T$.

(The Ohio State University, Linear Algebra Final Exam Problem)

Let $T:\R^2 \to \R^2$ be a linear transformation and let $A$ be the matrix representation of $T$ with respect to the standard basis of $\R^2$.

Prove that the following two statements are equivalent.

(a) There are exactly two distinct lines $L_1, L_2$ in $\R^2$ passing through the origin that are mapped onto themselves:
\[T(L_1)=L_1 \text{ and } T(L_2)=L_2.\]

(b) The matrix $A$ has two distinct nonzero real eigenvalues.

Let $W=C^{\infty}(\R)$ be the vector space of all $C^{\infty}$ real-valued functions (smooth function, differentiable for all degrees of differentiation).
Let $V$ be the vector space of all linear transformations from $W$ to $W$.
The addition and the scalar multiplication of $V$ are given by those of linear transformations.

Let $T_1, T_2, T_3$ be the elements in $V$ defined by
\begin{align*}
T_1\left(\, f(x) \,\right)&=\frac{\mathrm{d}}{\mathrm{d}x}f(x)\\[6pt]
T_2\left(\, f(x) \,\right)&=\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x)\\[6pt]
T_3\left(\, f(x) \,\right)&=\int_{0}^x \! f(t)\,\mathrm{d}t.
\end{align*}
Then determine whether the set $\{T_1, T_2, T_3\}$ are linearly independent or linearly dependent.

Let $P_n$ be the vector space of all polynomials with real coefficients of degree $n$ or less.
Consider the differentiation linear transformation $T: P_n\to P_n$ defined by
\[T\left(\, f(x) \,\right)=\frac{d}{dx}f(x).\]

(a) Consider the case $n=2$. Let $B=\{1, x, x^2\}$ be a basis of $P_2$. Find the matrix representation $A$ of the linear transformation $T$ with respect to the basis $B$.

(b) Compute $A^3$, where $A$ is the matrix obtained in part (a).

(c) If you computed $A^3$ in part (b) directly, then is there any theoretical explanation of your result?

(d) Now we consider the general case. Let $B$ be any basis of the vector space of $P_n$ and let $A$ be the matrix representation of the linear transformation $T$ with respect to the basis $B$.
Prove that without any calculation that the matrix $A$ is nilpotent.

Let $\mathbf{u}=\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$ and $T:\R^3 \to \R^3$ be the linear transformation
\[T(\mathbf{x})=\proj_{\mathbf{u}}\mathbf{x}=\left(\, \frac{\mathbf{u}\cdot \mathbf{x}}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}.\]

(a) Calculate the null space $\calN(T)$, a basis for $\calN(T)$ and nullity of $T$.

(b) Only by using part (a) and no other calculations, find $\det(A)$, where $A$ is the matrix representation of $T$ with respect to the standard basis of $\R^3$.

(c) Calculate the range $\calR(T)$, a basis for $\calR(T)$ and the rank of $T$.

(d) Calculate the matrix $A$ representing $T$ with respect to the standard basis for $\R^3$.

(e) Let
\[B=\left\{\, \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \,\right\}\]
be a basis for $\R^3$.
Calculate the coordinates of $\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}$ with respect to $B$.

(The Ohio State University, Linear Algebra Exam Problem)

Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$.
Define the map $f:\R^2 \to \calF[0, 2\pi]$ by
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta \sin x.\]
We put
\[V:=\im f=\{\alpha \cos x + \beta \sin x \in \calF[0, 2\pi] \mid \alpha, \beta \in \R\}.\]

(a) Prove that the map $f$ is a linear transformation.

(b) Prove that the set $\{\cos x, \sin x\}$ is a basis of the vector space $V$.

(c) Prove that the kernel is trivial, that is, $\ker f=\{\mathbf{0}\}$.
(This yields an isomorphism of $\R^2$ and $V$.)

(d) Define a map $g:V \to V$ by
\[g(\alpha \cos x + \beta \sin x):=\frac{d}{dx}(\alpha \cos x+ \beta \sin x)=\beta \cos x -\alpha \sin x.\]
Prove that the map $g$ is a linear transformation.

(e) Find the matrix representation of the linear transformation $g$ with respect to the basis $\{\cos x, \sin x\}$.