Category: Group Theory

Group Theory Problems and Solutions.

Popular posts in Group Theory are:

Union of Two Subgroups is Not a Group

Problem 625

Let $G$ be a group and let $H_1, H_2$ be subgroups of $G$ such that $H_1 \not \subset H_2$ and $H_2 \not \subset H_1$.

(a) Prove that the union $H_1 \cup H_2$ is never a subgroup in $G$.

(b) Prove that a group cannot be written as the union of two proper subgroups.

 
Read solution

LoadingAdd to solve later

The Set of Square Elements in the Multiplicative Group $(\Zmod{p})^*$

Problem 616

Suppose that $p$ is a prime number greater than $3$.
Consider the multiplicative group $G=(\Zmod{p})^*$ of order $p-1$.

(a) Prove that the set of squares $S=\{x^2\mid x\in G\}$ is a subgroup of the multiplicative group $G$.

(b) Determine the index $[G : S]$.

(c) Assume that $-1\notin S$. Then prove that for each $a\in G$ we have either $a\in S$ or $-a\in S$.

 
Read solution

LoadingAdd to solve later

Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$

Problem 613

Let $m$ and $n$ be positive integers such that $m \mid n$.

(a) Prove that the map $\phi:\Zmod{n} \to \Zmod{m}$ sending $a+n\Z$ to $a+m\Z$ for any $a\in \Z$ is well-defined.

(b) Prove that $\phi$ is a group homomorphism.

(c) Prove that $\phi$ is surjective.

(d) Determine the group structure of the kernel of $\phi$.

 
Read solution

LoadingAdd to solve later

If a Half of a Group are Elements of Order 2, then the Rest form an Abelian Normal Subgroup of Odd Order

Problem 575

Let $G$ be a finite group of order $2n$.
Suppose that exactly a half of $G$ consists of elements of order $2$ and the rest forms a subgroup.
Namely, suppose that $G=S\sqcup H$, where $S$ is the set of all elements of order in $G$, and $H$ is a subgroup of $G$. The cardinalities of $S$ and $H$ are both $n$.

Then prove that $H$ is an abelian normal subgroup of odd order.

 
Read solution

LoadingAdd to solve later

The Existence of an Element in an Abelian Group of Order the Least Common Multiple of Two Elements

Problem 497

Let $G$ be an abelian group.
Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively.
Prove that there exists an element $c$ in $G$ such that the order of $c$ is the least common multiple of $m$ and $n$.

Also determine whether the statement is true if $G$ is a non-abelian group.

 
Read solution

LoadingAdd to solve later