Category: Group Theory

Group Theory Problems and Solutions.

Popular posts in Group Theory are:

If a Half of a Group are Elements of Order 2, then the Rest form an Abelian Normal Subgroup of Odd Order

Problem 575

Let $G$ be a finite group of order $2n$.
Suppose that exactly a half of $G$ consists of elements of order $2$ and the rest forms a subgroup.
Namely, suppose that $G=S\sqcup H$, where $S$ is the set of all elements of order in $G$, and $H$ is a subgroup of $G$. The cardinalities of $S$ and $H$ are both $n$.

Then prove that $H$ is an abelian normal subgroup of odd order.


Read solution

FavoriteLoadingAdd to solve later

The Existence of an Element in an Abelian Group of Order the Least Common Multiple of Two Elements

Problem 497

Let $G$ be an abelian group.
Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively.
Prove that there exists an element $c$ in $G$ such that the order of $c$ is the least common multiple of $m$ and $n$.

Also determine whether the statement is true if $G$ is a non-abelian group.


Read solution

FavoriteLoadingAdd to solve later

A Group Homomorphism that Factors though Another Group

Problem 490

Let $G, H, K$ be groups. Let $f:G\to K$ be a group homomorphism and let $\pi:G\to H$ be a surjective group homomorphism such that the kernel of $\pi$ is included in the kernel of $f$: $\ker(\pi) \subset \ker(f)$.

Define a map $\tilde{f}:H\to K$ as follows.
For each $h\in H$, there exists $g\in G$ such that $\pi(g)=h$ since $\pi:G\to H$ is surjective.
Define $\tilde{f}:H\to K$ by $\tilde{f}(h)=f(g)$.

(a) Prove that the map $\tilde{f}:H\to K$ is well-defined.

(b) Prove that $\tilde{f}:H\to K$ is a group homomorphism.


Read solution

FavoriteLoadingAdd to solve later