Tagged: group homomorphism

A Group Homomorphism that Factors though Another Group

Problem 490

Let $G, H, K$ be groups. Let $f:G\to K$ be a group homomorphism and let $\pi:G\to H$ be a surjective group homomorphism such that the kernel of $\pi$ is included in the kernel of $f$: $\ker(\pi) \subset \ker(f)$.

Define a map $\tilde{f}:H\to K$ as follows.
For each $h\in H$, there exists $g\in G$ such that $\pi(g)=h$ since $\pi:G\to H$ is surjective.
Define $\tilde{f}:H\to K$ by $\tilde{f}(h)=f(g)$.

(a) Prove that the map $\tilde{f}:H\to K$ is well-defined.

(b) Prove that $\tilde{f}:H\to K$ is a group homomorphism.

 

Read solution

FavoriteLoadingAdd to solve later

Injective Group Homomorphism that does not have Inverse Homomorphism

Problem 443

Let $A=B=\Z$ be the additive group of integers.
Define a map $\phi: A\to B$ by sending $n$ to $2n$ for any integer $n\in A$.

(a) Prove that $\phi$ is a group homomorphism.

(b) Prove that $\phi$ is injective.

(c) Prove that there does not exist a group homomorphism $\psi:B \to A$ such that $\psi \circ \phi=\id_A$.

 

Read solution

FavoriteLoadingAdd to solve later

The Additive Group $\R$ is Isomorphic to the Multiplicative Group $\R^{+}$ by Exponent Function

Problem 322

Let $\R=(\R, +)$ be the additive group of real numbers and let $\R^{\times}=(\R\setminus\{0\}, \cdot)$ be the multiplicative group of real numbers.

(a) Prove that the map $\exp:\R \to \R^{\times}$ defined by
\[\exp(x)=e^x\] is an injective group homomorphism.

(b) Prove that the additive group $\R$ is isomorphic to the multiplicative group
\[\R^{+}=\{x \in \R \mid x > 0\}.\]

 

Read solution

FavoriteLoadingAdd to solve later

The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$

Problem 283

Let $F$ be a field and let
\[H(F)=\left\{\, \begin{bmatrix}
1 & a & b \\
0 &1 &c \\
0 & 0 & 1
\end{bmatrix} \quad \middle| \quad \text{ for any} a,b,c\in F\, \right\}\] be the Heisenberg group over $F$.
(The group operation of the Heisenberg group is matrix multiplication.)

Determine which matrices lie in the center of $H(F)$ and prove that the center $Z\big(H(F)\big)$ is isomorphic to the additive group $F$.

 

Read solution

FavoriteLoadingAdd to solve later

Eckmann–Hilton Argument: Group Operation is a Group Homomorphism

Problem 268

Let $G$ be a group with the identity element $e$ and suppose that we have a group homomorphism $\phi$ from the direct product $G \times G$ to $G$ satisfying
\[\phi(e, g)=g \text{ and } \phi(g, e)=g, \tag{*}\] for any $g\in G$.

Let $\mu: G\times G \to G$ be a map defined by
\[\mu(g, h)=gh.\] (That is, $\mu$ is the group operation on $G$.)

Then prove that $\phi=\mu$.
Also prove that the group $G$ is abelian.

 

Read solution

FavoriteLoadingAdd to solve later

Equivalent Definitions of Characteristic Subgroups. Center is Characteristic.

Problem 246

Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$.

(a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$.

(b) Prove that the center $Z(G)$ of $G$ is characteristic in $G$.

 

Read solution

FavoriteLoadingAdd to solve later

A Group Homomorphism is Injective if and only if Monic

Problem 243

Let $f:G\to G’$ be a group homomorphism. We say that $f$ is monic whenever we have $fg_1=fg_2$, where $g_1:K\to G$ and $g_2:K \to G$ are group homomorphisms for some group $K$, we have $g_1=g_2$.

Then prove that a group homomorphism $f: G \to G’$ is injective if and only if it is monic.

 

Read solution

FavoriteLoadingAdd to solve later

Group of $p$-Power Roots of 1 is Isomorphic to a Proper Quotient of Itself

Problem 221

Let $p$ be a prime number. Let
\[G=\{z\in \C \mid z^{p^n}=1\} \] be the group of $p$-power roots of $1$ in $\C$.

Show that the map $\Psi:G\to G$ mapping $z$ to $z^p$ is a surjective homomorphism.
Also deduce from this that $G$ is isomorphic to a proper quotient of $G$ itself.

 

Read solution

FavoriteLoadingAdd to solve later

Group Homomorphism, Conjugate, Center, and Abelian group

Problem 209

Let $G$ be a group. We fix an element $x$ of $G$ and define a map
\[ \Psi_x: G\to G\] by mapping $g\in G$ to $xgx^{-1} \in G$.
Then show that
(a) the map $\Psi_x$ is a group homomorphism,

(b) the map $\Psi_x=\id$ if and only if $x\in Z(G)$, where $Z(G)$ is the center of the group $G$.

(c) the map $\Psi_y=\id$ for all $y\in G$ if and only if $G$ is an abelian group.

 

Read solution

FavoriteLoadingAdd to solve later