Is the Set of Nilpotent Element an Ideal?
Problem 620
Is it true that a set of nilpotent elements in a ring $R$ is an ideal of $R$?
If so, prove it. Otherwise give a counterexample.
Add to solve laterAbelian Group Problems and Solutions.
The other popular topics in Group Theory are:
Is it true that a set of nilpotent elements in a ring $R$ is an ideal of $R$?
If so, prove it. Otherwise give a counterexample.
Add to solve later Suppose that $p$ is a prime number greater than $3$.
Consider the multiplicative group $G=(\Zmod{p})^*$ of order $p-1$.
(a) Prove that the set of squares $S=\{x^2\mid x\in G\}$ is a subgroup of the multiplicative group $G$.
(b) Determine the index $[G : S]$.
(c) Assume that $-1\notin S$. Then prove that for each $a\in G$ we have either $a\in S$ or $-a\in S$.
Add to solve later Let $G$ be a finite group of order $2n$.
Suppose that exactly a half of $G$ consists of elements of order $2$ and the rest forms a subgroup.
Namely, suppose that $G=S\sqcup H$, where $S$ is the set of all elements of order in $G$, and $H$ is a subgroup of $G$. The cardinalities of $S$ and $H$ are both $n$.
Then prove that $H$ is an abelian normal subgroup of odd order.
Add to solve later Let $N$ be a normal subgroup of a group $G$.
Suppose that $G/N$ is an infinite cyclic group.
Then prove that for each positive integer $n$, there exists a normal subgroup $H$ of $G$ of index $n$.
Add to solve later Let $G$ be an abelian group and let $H$ be the subset of $G$ consisting of all elements of $G$ of finite order. That is,
\[H=\{ a\in G \mid \text{the order of $a$ is finite}\}.\]
Prove that $H$ is a subgroup of $G$.
Add to solve later Let $G$ be an abelian group.
Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively.
Prove that there exists an element $c$ in $G$ such that the order of $c$ is the least common multiple of $m$ and $n$.
Also determine whether the statement is true if $G$ is a non-abelian group.
Add to solve laterProve that every finite group having more than two elements has a nontrivial automorphism.
(Michigan State University, Abstract Algebra Qualifying Exam)
Read solution
Let $R$ be a ring with $1$.
A nonzero $R$-module $M$ is called irreducible if $0$ and $M$ are the only submodules of $M$.
(It is also called a simple module.)
(a) Prove that a nonzero $R$-module $M$ is irreducible if and only if $M$ is a cyclic module with any nonzero element as its generator.
(b) Determine all the irreducible $\Z$-modules.
Add to solve laterIn this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.
Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic to the cyclic group $Z_n=\Zmod{n}$ of order $n$.
If $M$ is a finite abelian group, then $M$ is naturally a $\Z$-module.
Can this action be extended to make $M$ into a $\Q$-module?
Add to solve laterLet $f:R\to R’$ be a ring homomorphism. Let $I’$ be an ideal of $R’$ and let $I=f^{-1}(I)$ be the preimage of $I$ by $f$. Prove that $I$ is an ideal of the ring $R$.
Add to solve later Let $G$ be a group. Suppose that we have
\[(ab)^3=a^3b^3\]
for any elements $a, b$ in $G$. Also suppose that $G$ has no elements of order $3$.
Then prove that $G$ is an abelian group.
Add to solve later Let $G$ be a group. Suppose that
\[(ab)^2=a^2b^2\]
for any elements $a, b$ in $G$. Prove that $G$ is an abelian group.
Let $G$ be a group. Let $a$ and $b$ be elements of $G$.
If the order of $a, b$ are $m, n$ respectively, then is it true that the order of the product $ab$ divides $mn$? If so give a proof. If not, give a counterexample.
Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$.
Let $\Aut(N)$ be the group of automorphisms of $G$.
Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime.
Then prove that $N$ is contained in the center of $G$.
Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism.
Prove that we have an isomorphism of groups:
\[G \cong \ker(f)\times \Z.\]
Let $H$ and $K$ be normal subgroups of a group $G$.
Suppose that $H < K$ and the quotient group $G/H$ is abelian.
Then prove that $G/K$ is also an abelian group.
Let $G$ be an abelian group and let $N$ be a normal subgroup of $G$.
Then prove that the quotient group $G/N$ is also an abelian group.