Let $A$ be a $2\times 2$ real symmetric matrix.
Prove that all the eigenvalues of $A$ are real numbers by considering the characteristic polynomial of $A$.

Let $A$ and $B$ be $n\times n$ matrices and assume that they commute: $AB=BA$.
Then prove that the matrices $A$ and $B$ share at least one common eigenvector.

We fix a nonzero vector $\mathbf{a}$ in $\R^3$ and define a map $T:\R^3\to \R^3$ by
\[T(\mathbf{v})=\mathbf{a}\times \mathbf{v}\]
for all $\mathbf{v}\in \R^3$.
Here the right-hand side is the cross product of $\mathbf{a}$ and $\mathbf{v}$.

(a) Prove that $T:\R^3\to \R^3$ is a linear transformation.

(b) Determine the eigenvalues and eigenvectors of $T$.

Prove that the matrix
\[A=\begin{bmatrix}
0 & 1\\
-1& 0
\end{bmatrix}\]
is diagonalizable.
Prove, however, that $A$ cannot be diagonalized by a real nonsingular matrix.
That is, there is no real nonsingular matrix $S$ such that $S^{-1}AS$ is a diagonal matrix.

Consider the $2\times 2$ matrix
\[A=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta \end{bmatrix},\]
where $\theta$ is a real number $0\leq \theta < 2\pi$.

(a) Find the characteristic polynomial of the matrix $A$.

(b) Find the eigenvalues of the matrix $A$.

(c) Determine the eigenvectors corresponding to each of the eigenvalues of $A$.

Consider the complex matrix
\[A=\begin{bmatrix}
\sqrt{2}\cos x & i \sin x & 0 \\
i \sin x &0 &-i \sin x \\
0 & -i \sin x & -\sqrt{2} \cos x
\end{bmatrix},\]
where $x$ is a real number between $0$ and $2\pi$.

Determine for which values of $x$ the matrix $A$ is diagonalizable.
When $A$ is diagonalizable, find a diagonal matrix $D$ so that $P^{-1}AP=D$ for some nonsingular matrix $P$.

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$.
Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$.

Prove that $P$ is an idempotent matrix.

(b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be unit vectors in $\R^n$ such that $\mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Let $Q=\mathbf{u}\mathbf{u}^{\trans}+\mathbf{v}\mathbf{v}^{\trans}$.

Prove that $Q$ is an idempotent matrix.

(c) Prove that each nonzero vector of the form $a\mathbf{u}+b\mathbf{v}$ for some $a, b\in \R$ is an eigenvector corresponding to the eigenvalue $1$ for the matrix $Q$ in part (b).

You may use the following information without proving it.
The eigenvalues of $A$ are $-1, 0, 1$. The eigenspaces are given by
\[E_{-1}=\Span\left\{\, \begin{bmatrix}
3 \\
-1 \\
-5
\end{bmatrix} \,\right\}, \quad E_{0}=\Span\left\{\, \begin{bmatrix}
-2 \\
1 \\
4
\end{bmatrix} \,\right\}, \quad E_{1}=\Span\left\{\, \begin{bmatrix}
-4 \\
2 \\
7
\end{bmatrix} \,\right\}.\]

(The Ohio State University, Linear Algebra Final Exam Problem)

Let
\[A=\begin{bmatrix}
1 & 2 & 1 \\
-1 &4 &1 \\
2 & -4 & 0
\end{bmatrix}.\]
The matrix $A$ has an eigenvalue $2$.
Find a basis of the eigenspace $E_2$ corresponding to the eigenvalue $2$.

(The Ohio State University, Linear Algebra Final Exam Problem)