The Set of Vectors Perpendicular to a Given Vector is a Subspace

Vector Space Problems and Solutions

Problem 659

Fix the row vector $\mathbf{b} = \begin{bmatrix} -1 & 3 & -1 \end{bmatrix}$, and let $\R^3$ be the vector space of $3 \times 1$ column vectors. Define
\[W = \{ \mathbf{v} \in \R^3 \mid \mathbf{b} \mathbf{v} = 0 \}.\] Prove that $W$ is a vector subspace of $\R^3$.

 
LoadingAdd to solve later

Sponsored Links

Proof.

We verify the subspace criteria: the zero vector $\mathbf{0}$ of $\R^3$ is in $W$, and $W$ is closed under addition and scalar multiplication.


First, the zero element in $\R^3$ is $\mathbf{0}$, the $3 \times 1$ column vector whose entries are all $0$. Then clearly $\mathbf{b} \mathbf{0} = 0$, and so $\mathbf{0} \in W$.


Next, suppose $\mathbf{v} , \mathbf{w} \in W$, and $c \in \mathbb{R}$. Then $\mathbf{b} \mathbf{v} = \mathbf{b} \mathbf{w} = 0$, and so
\[\mathbf{b} ( \mathbf{v} + \mathbf{w} ) = \mathbf{b} \mathbf{v} + \mathbf{b} \mathbf{w} = 0.\] Thus, $\mathbf{v} + \mathbf{w} \in W$.


Because, again, $\mathbf{b} \mathbf{v} = \mathbf{0}$, we have
\[\mathbf{b} ( c \mathbf{v} ) = c \mathbf{b} \mathbf{v} = c \mathbf{0} = \mathbf{0}.\] Thus $c \mathbf{v} \in W$. These three criteria show that $W$ is a vector subspace of $\R^3$.

Comment.

We can generalize the problem with an arbitrary $1\times 3$ row vector $\mathbf{b}$.

The proof is almost identical.
(Look at the proof. We didn’t use components of the row vector $\mathbf{b} = \begin{bmatrix} -1 & 3 & -1 \end{bmatrix}$.)


Note that vectors $\mathbf{u}, \mathbf{v}\in \R^3$ is said to be perpendicular if
\[\mathbf{u}\cdot \mathbf{v}=\mathbf{u}^{\trans}\mathbf{v}=0.\]

Thus, the result of the problem says that for a fixed vector $\mathbf{u}\in \R^3$, the set of vectors $\mathbf{v}$ that are perpendicular to $\mathbf{u}$ is a subspace in $\R^3$.
(Note that we appy the problem to $\mathbf{b}=\mathbf{u}^{\trans}$.)


LoadingAdd to solve later

Sponsored Links

More from my site

  • Column Rank = Row Rank. (The Rank of a Matrix is the Same as the Rank of its Transpose)Column Rank = Row Rank. (The Rank of a Matrix is the Same as the Rank of its Transpose) Let $A$ be an $m\times n$ matrix. Prove that the rank of $A$ is the same as the rank of the transpose matrix $A^{\trans}$.   Hint. Recall that the rank of a matrix $A$ is the dimension of the range of $A$. The range of $A$ is spanned by the column vectors of the matrix […]
  • The Column Vectors of Every $3\times 5$ Matrix Are Linearly DependentThe Column Vectors of Every $3\times 5$ Matrix Are Linearly Dependent (a) Prove that the column vectors of every $3\times 5$ matrix $A$ are linearly dependent. (b) Prove that the row vectors of every $5\times 3$ matrix $B$ are linearly dependent.   Proof. (a) Prove that the column vectors of every $3\times 5$ matrix $A$ are linearly […]
  • Subset of Vectors Perpendicular to Two Vectors is a SubspaceSubset of Vectors Perpendicular to Two Vectors is a Subspace Let $\mathbf{a}$ and $\mathbf{b}$ be fixed vectors in $\R^3$, and let $W$ be the subset of $\R^3$ defined by \[W=\{\mathbf{x}\in \R^3 \mid \mathbf{a}^{\trans} \mathbf{x}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{x}=0\}.\] Prove that the subset $W$ is a subspace of […]
  • The Centralizer of a Matrix is a SubspaceThe Centralizer of a Matrix is a Subspace Let $V$ be the vector space of $n \times n$ matrices, and $M \in V$ a fixed matrix. Define \[W = \{ A \in V \mid AM = MA \}.\] The set $W$ here is called the centralizer of $M$ in $V$. Prove that $W$ is a subspace of $V$.   Proof. First we check that the zero […]
  • Prove that the Center of Matrices is a SubspaceProve that the Center of Matrices is a Subspace Let $V$ be the vector space of $n \times n$ matrices with real coefficients, and define \[ W = \{ \mathbf{v} \in V \mid \mathbf{v} \mathbf{w} = \mathbf{w} \mathbf{v} \mbox{ for all } \mathbf{w} \in V \}.\] The set $W$ is called the center of $V$. Prove that $W$ is a subspace […]
  • Subspaces of Symmetric, Skew-Symmetric MatricesSubspaces of Symmetric, Skew-Symmetric Matrices Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$. Prove or disprove that the following subsets of $V$ are subspaces of $V$. (a) The set $S$ consisting of all $n\times n$ symmetric matrices. (b) The set $T$ consisting of […]
  • Determine the Values of $a$ so that $W_a$ is a SubspaceDetermine the Values of $a$ so that $W_a$ is a Subspace For what real values of $a$ is the set \[W_a = \{ f \in C(\mathbb{R}) \mid f(0) = a \}\] a subspace of the vector space $C(\mathbb{R})$ of all real-valued functions?   Solution. The zero element of $C(\mathbb{R})$ is the function $\mathbf{0}$ defined by […]
  • The Vector Space Consisting of All Traceless Diagonal MatricesThe Vector Space Consisting of All Traceless Diagonal Matrices Let $V$ be the set of all $n \times n$ diagonal matrices whose traces are zero. That is, \begin{equation*} V:=\left\{ A=\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 &a_{22} & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
Prove that the Center of Matrices is a Subspace

Let $V$ be the vector space of $n \times n$ matrices with real coefficients, and define \[ W = \{...

Close