Using Properties of Inverse Matrices, Simplify the Expression

Ohio State University exam problems and solutions in mathematics

Problem 694

Let $A, B, C$ be $n\times n$ invertible matrices. When you simplify the expression
\[C^{-1}(AB^{-1})^{-1}(CA^{-1})^{-1}C^2,\] which matrix do you get?
(a) $A$
(b) $C^{-1}A^{-1}BC^{-1}AC^2$
(c) $B$
(d) $C^2$
(e) $C^{-1}BC$
(f) $C$

 
LoadingAdd to solve later

Sponsored Links

Solution.

In this problem, we use the following facts about inverse matrices: if $P, Q$ are invertible matrices, then we have
\[(PQ)^{-1}=Q^{-1}P^{-1} \text{ and } (P^{-1})^{-1}=P.\]


Using these, we simplify the given expression as follows:
\begin{align*}
&C^{-1}(AB^{-1})^{-1}(CA^{-1})^{-1}C^2\\
&=C^{-1}(B^{-1})^{-1}A^{-1}(A^{-1})^{-1}C^{-1}C^2\\
&=C^{-1}BA^{-1}AC^{-1}C^2\\
&=C^{-1}BIC\\
&=C^{-1}BC,
\end{align*}
where we used the identity $A^{-1}A=I$, identity matrix, in the third step.
Thus, the answer is (e).

Common Mistake

This is a midterm exam problem of Lienar Algebra at the Ohio State University.

Here are two common mistakes.

The first one is to use a wrong identity $(PQ)^{-1}=P^{-1}Q^{-1}$. This is WRONG.
If you use this, then most likely you chose (b).

The seocnd one is to think matrix multiplication is commutative. Even though $PQ\neq QP$ for matrices $P, Q$, some students freely cancel terms.
In this case, (c) was chosen.

Be careful, if you have $A^{-1}BA$, then in general it is not equal to $B$. You cannot cancel $A$ becuase $A$ and $A^{-1}$ are not adjacent each other.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Find the Inverse Matrix of a $3\times 3$ Matrix if ExistsFind the Inverse Matrix of a $3\times 3$ Matrix if Exists Find the inverse matrix of \[A=\begin{bmatrix} 1 & 1 & 2 \\ 0 &0 &1 \\ 1 & 0 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (The Ohio State University, Linear Algebra Midterm Exam […]
  • Find a Nonsingular Matrix $A$ satisfying $3A=A^2+AB$Find a Nonsingular Matrix $A$ satisfying $3A=A^2+AB$ (a) Find a $3\times 3$ nonsingular matrix $A$ satisfying $3A=A^2+AB$, where \[B=\begin{bmatrix} 2 & 0 & -1 \\ 0 &2 &-1 \\ -1 & 0 & 1 \end{bmatrix}.\] (b) Find the inverse matrix of $A$.   Solution (a) Find a $3\times 3$ nonsingular matrix $A$. Assume […]
  • Find a General Formula of a Linear Transformation From $\R^2$ to $\R^3$Find a General Formula of a Linear Transformation From $\R^2$ to $\R^3$ Suppose that $T: \R^2 \to \R^3$ is a linear transformation satisfying \[T\left(\, \begin{bmatrix} 1 \\ 2 \end{bmatrix}\,\right)=\begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \text{ and } T\left(\, \begin{bmatrix} 0 \\ 1 \end{bmatrix} […]
  • Solve a System by the Inverse Matrix and Compute $A^{2017}\mathbf{x}$Solve a System by the Inverse Matrix and Compute $A^{2017}\mathbf{x}$ Let $A$ be the coefficient matrix of the system of linear equations \begin{align*} -x_1-2x_2&=1\\ 2x_1+3x_2&=-1. \end{align*} (a) Solve the system by finding the inverse matrix $A^{-1}$. (b) Let $\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be the solution […]
  • Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a RelationQuiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation (a) Find the inverse matrix of \[A=\begin{bmatrix} 1 & 0 & 1 \\ 1 &0 &0 \\ 2 & 1 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (b) Find a nonsingular $2\times 2$ matrix $A$ such that \[A^3=A^2B-3A^2,\] where […]
  • Diagonalize a 2 by 2 Matrix if DiagonalizableDiagonalize a 2 by 2 Matrix if Diagonalizable Determine whether the matrix \[A=\begin{bmatrix} 1 & 4\\ 2 & 3 \end{bmatrix}\] is diagonalizable. If so, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$. (The Ohio State University, Linear Algebra Final Exam […]
  • Linear Algebra Midterm 1 at the Ohio State University (2/3)Linear Algebra Midterm 1 at the Ohio State University (2/3) The following problems are Midterm 1 problems of Linear Algebra (Math 2568) at the Ohio State University in Autumn 2017. There were 9 problems that covered Chapter 1 of our textbook (Johnson, Riess, Arnold). The time limit was 55 minutes. This post is Part 2 and contains […]
  • Linear Algebra Midterm 1 at the Ohio State University (1/3)Linear Algebra Midterm 1 at the Ohio State University (1/3) The following problems are Midterm 1 problems of Linear Algebra (Math 2568) at the Ohio State University in Autumn 2017. There were 9 problems that covered Chapter 1 of our textbook (Johnson, Riess, Arnold). The time limit was 55 minutes. This post is Part 1 and contains the […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Elementary Questions about a Matrix

Let \[A=\begin{bmatrix} -5 & 0 & 1 & 2 \\ 3 &8 & -3 & 7 \\ 0 & 11...

Close