Column Rank = Row Rank. (The Rank of a Matrix is the Same as the Rank of its Transpose)

Problems and solutions in Linear Algebra

Problem 136

Let $A$ be an $m\times n$ matrix. Prove that the rank of $A$ is the same as the rank of the transpose matrix $A^{\trans}$.

 
LoadingAdd to solve later

Sponsored Links


Hint.

Recall that the rank of a matrix $A$ is the dimension of the range of $A$.
The range of $A$ is spanned by the column vectors of the matrix $A$.

Proof.

We write $A=(a_{ij})$ and let
\[\mathbf{A}_i=\begin{bmatrix}
a_{1i} \\
a_{2i} \\
\cdots \\
a_{mi}
\end{bmatrix}\] be the $i$-th column vector of $A$ for $i=1,2,\dots, n$.
Also let
\[\mathbf{B}_i=\begin{bmatrix}
a_{i1} \\
a_{i2} \\
\cdots \\
a_{in}
\end{bmatrix}\] be the $i$-th column vector of $A^{\trans}$ for $i=1, 2, \dots, m$, that is $B_i$ is the transpose of the $i$-th row vector of $A$.


Suppose that $\rk(A)=\dim(\calR(A^{\trans}))=k$ and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a basis for the range $\calR(A^{\trans})$.
We write
\[\mathbf{v}_{i}=\begin{bmatrix}
v_{i1} \\
v_{i2} \\
\vdots \\
v_{in}
\end{bmatrix}\] for $i=1,2, \dots, k$.
Then each column vector $\mathbf{B}_i$ of $A^{\trans}$ is a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$. Thus we have
\begin{align*}
\mathbf{B}_1 &=c_{11}\mathbf{v}_1+\cdots+c_{1k}\mathbf{v}_k\\
\mathbf{B}_2 &=c_{21}\mathbf{v}_1+\cdots+c_{2k}\mathbf{v}_k\\
\vdots\\
\mathbf{B}_m &=c_{m1}\mathbf{v}_1+\cdots+c_{mk}\mathbf{v}_k.
\end{align*}


More explicitly we have,
\begin{align*}
\begin{bmatrix}
a_{11} \\
a_{12} \\
\cdots \\
a_{1n}
\end{bmatrix} &=c_{11}\begin{bmatrix}
v_{11} \\
v_{12} \\
\vdots \\
v_{1n}
\end{bmatrix}+\cdots+c_{1k}\begin{bmatrix}
v_{k1} \\
v_{k2} \\
\vdots \\
v_{kn}
\end{bmatrix}\\
\begin{bmatrix}
a_{21} \\
a_{22} \\
\cdots \\
a_{2n}
\end{bmatrix} &=c_{21}\begin{bmatrix}
v_{11} \\
v_{12} \\
\vdots \\
v_{1n}
\end{bmatrix}+\cdots+c_{2k}\begin{bmatrix}
v_{k1} \\
v_{k2} \\
\vdots \\
v_{kn}
\end{bmatrix}\\
\vdots\\
\begin{bmatrix}
a_{m1} \\
a_{m2} \\
\cdots \\
a_{mn}
\end{bmatrix} &=c_{m1}\begin{bmatrix}
v_{11} \\
v_{12} \\
\vdots \\
v_{1n}
\end{bmatrix}+\cdots+c_{mk}\begin{bmatrix}
v_{k1} \\
v_{k2} \\
\vdots \\
v_{kn}
\end{bmatrix}\\
\end{align*}


Now, we look at the $i$-th entries for the above vectors and we have
\begin{align*}
a_{1i}&=c_{11}v_{1i}+\cdots+c_{1k}v_{ki}\\
a_{2i}&=c_{21}v_{1i}+\cdots+c_{2k}v_{ki}\\
\vdots \\
a_{mi}&=c_{m1}v_{1i}+\cdots+c_{mk}v_{ki}\\.
\end{align*}
We rewrite these as a vector equality and obtain
\begin{align*}
\mathbf{A}_i&=\begin{bmatrix}
a_{1i} \\
a_{2i} \\
\cdots \\
a_{mi}
\end{bmatrix}=v_{1i}\begin{bmatrix}
c_{11} \\
c_{21} \\
\vdots \\
c_{m1}
\end{bmatrix}+\cdots +v_{ki}\begin{bmatrix}
c_{1k} \\
c_{2k} \\
\vdots \\
c_{mk}
\end{bmatrix}\\
&=v_{1i}\mathbf{c}_{1}+\cdots+v_{ki}\mathbf{c}_k,
\end{align*}
where we put
\[c_j=\begin{bmatrix}
c_{1j} \\
c_{2j} \\
\vdots \\
c_{mj}
\end{bmatrix}\] for $j=1,2,\dots,k$.


This shows that any column vector $\mathbf{A}_i$ of $A$ is a linear combination of vectors $\mathbf{c}_1, \dots, \mathbf{c}_k$. Therefore we have
\[\calR(A)=\Span\{\mathbf{A}_1, \dots, \mathbf{A}_n\} \subset \Span\{\mathbf{c}_1, \dots, \mathbf{c}_k\}. \] Since the dimension of a subspace is smaller than or equal to the dimension of a vector space containing it, we have
\[\rk(A)=\dim(\calR(A)) \leq \dim(\Span\{\mathbf{c}_1, \dots, \mathbf{c}_k\}) \leq k. \] Hence we obtain
\[\rk(A) \leq \rk(A^{\trans}).\]


To achieve the opposite inequality, we repeat this argument using $A^{\trans}$, and we obtain
\[\rk(A^{\trans}) \leq \rk((A^{\trans})^{\trans})=\rk(A)\] since we have $(A^{\trans})^{\trans}=A$.

Therefore, we proved the required equality
\[\rk(A)=\rk(A^{\trans}).\]


LoadingAdd to solve later

Sponsored Links

More from my site

  • Rank and Nullity of a Matrix, Nullity of TransposeRank and Nullity of a Matrix, Nullity of Transpose Let $A$ be an $m\times n$ matrix. The nullspace of $A$ is denoted by $\calN(A)$. The dimension of the nullspace of $A$ is called the nullity of $A$. Prove the followings. (a) $\calN(A)=\calN(A^{\trans}A)$. (b) $\rk(A)=\rk(A^{\trans}A)$.   Hint. For part (b), […]
  • The Rank of the Sum of Two MatricesThe Rank of the Sum of Two Matrices Let $A$ and $B$ be $m\times n$ matrices. Prove that \[\rk(A+B) \leq \rk(A)+\rk(B).\] Proof. Let \[A=[\mathbf{a}_1, \dots, \mathbf{a}_n] \text{ and } B=[\mathbf{b}_1, \dots, \mathbf{b}_n],\] where $\mathbf{a}_i$ and $\mathbf{b}_i$ are column vectors of $A$ and $B$, […]
  • Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a MatrixRow Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix Let \[A=\begin{bmatrix} 1 & 1 & 2 \\ 2 &2 &4 \\ 2 & 3 & 5 \end{bmatrix}.\] (a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$. (b) Find a basis for the null space of $A$. (c) Find a basis for the range of $A$ that […]
  • Rank of the Product of Matrices $AB$ is Less than or Equal to the Rank of $A$Rank of the Product of Matrices $AB$ is Less than or Equal to the Rank of $A$ Let $A$ be an $m \times n$ matrix and $B$ be an $n \times l$ matrix. Then prove the followings. (a) $\rk(AB) \leq \rk(A)$. (b) If the matrix $B$ is nonsingular, then $\rk(AB)=\rk(A)$.   Hint. The rank of an $m \times n$ matrix $M$ is the dimension of the range […]
  • Find a Basis for the Subspace spanned by Five VectorsFind a Basis for the Subspace spanned by Five Vectors Let $S=\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3},\mathbf{v}_{4},\mathbf{v}_{5}\}$ where \[ \mathbf{v}_{1}= \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix} ,\;\mathbf{v}_{2}= \begin{bmatrix} 1 \\ 3 \\ 1 \\ 1 \end{bmatrix} ,\;\mathbf{v}_{3}= \begin{bmatrix} 1 \\ 5 \\ -1 […]
  • The Subset Consisting of the Zero Vector is a Subspace and its Dimension is ZeroThe Subset Consisting of the Zero Vector is a Subspace and its Dimension is Zero Let $V$ be a subset of the vector space $\R^n$ consisting only of the zero vector of $\R^n$. Namely $V=\{\mathbf{0}\}$. Then prove that $V$ is a subspace of $\R^n$.   Proof. To prove that $V=\{\mathbf{0}\}$ is a subspace of $\R^n$, we check the following subspace […]
  • A Matrix Representation of a Linear Transformation and Related SubspacesA Matrix Representation of a Linear Transformation and Related Subspaces Let $T:\R^4 \to \R^3$ be a linear transformation defined by \[ T\left (\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \,\right) = \begin{bmatrix} x_1+2x_2+3x_3-x_4 \\ 3x_1+5x_2+8x_3-2x_4 \\ x_1+x_2+2x_3 \end{bmatrix}.\] (a) Find a matrix $A$ such that […]
  • Quiz 7. Find a Basis of the Range, Rank, and Nullity of a MatrixQuiz 7. Find a Basis of the Range, Rank, and Nullity of a Matrix (a) Let $A=\begin{bmatrix} 1 & 3 & 0 & 0 \\ 1 &3 & 1 & 2 \\ 1 & 3 & 1 & 2 \end{bmatrix}$. Find a basis for the range $\calR(A)$ of $A$ that consists of columns of $A$. (b) Find the rank and nullity of the matrix $A$ in part (a).   Solution. (a) […]

You may also like...

2 Responses

  1. Hank says:

    There is a typo in definition of i-th column vector of A. It’s last element should be a(m,i), not a(n,i). This mistake remains in the equation following “We rewrite these as a vector equality and obtain…”

Click here to cancel reply.

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Rank of the Product of Matrices $AB$ is Less than or Equal to the Rank of $A$

Let $A$ be an $m \times n$ matrix and $B$ be an $n \times l$ matrix. Then prove the followings....

Close