Sum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All Zero

Problems and solutions in Linear Algebra

Problem 139

Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if
\[A_1^2+A_2^2+\cdots+A_m^2=\calO,\] where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.

 
LoadingAdd to solve later

Sponsored Links


Hint.

Recall that a complex matrix $A$ is Hermitian if the conjugate transpose of $A$ is $A$ itself.
Namely, $A$ is Hermitian if
\[\bar{A}^{\trans}=A.\]

We also use the length of a vector in the proof below.
Let $\mathbf{v}$ be $n$-dimensional complex vector. Then the length of $\mathbf{v}$ is defined to be
\[\|\mathbf{v}\|=\sqrt{\bar{\mathbf{v}}^{\trans}\mathbf{v}}.\] The length of a complex vector $\mathbf{v}$ is a non-negative real number.

The length is also called norm or magnitude.

Proof.

Let $\mathbf{x}$ be an $n$-dimensional vector, that is, $\mathbf{x}\in \R^n$.

Then for each $i$, we have
\[\bar{\mathbf{x}}^{\trans}A_i^2\mathbf{x}=\bar{\mathbf{x}}^{\trans}\bar{A}_i^{\trans}A_i\mathbf{x}=(\overline{A_i\mathbf{x}})^{\trans}(A_i\mathbf{x})=\|A_i\mathbf{x}\|^2\geq 0.\] Here, the first equality follows from the definition of a Hermitian matrix.


Now we compute
\begin{align*}
0&=\bar{\mathbf{x}}^{\trans}\calO \mathbf{x}=\bar{\mathbf{x}}^{\trans}(A_1^2+A_2^2+\cdots+A_m^2) \mathbf{x}\\
&=\bar{\mathbf{x}}^{\trans}A_1^2\mathbf{x}+\bar{\mathbf{x}}^{\trans}A_2^2\mathbf{x}+\cdots+\bar{\mathbf{x}}^{\trans}A_m^2 \mathbf{x}\\
&=\|A_1\mathbf{x}\|^2+\|A_2\mathbf{x}\|^2+\cdots +\|A_m\mathbf{x}\|^2.
\end{align*}

Since each length $\|A_i\mathbf{x}\|$ is a non-negative real number, this implies that we have $A_i\mathbf{x}=\mathbf{0}$ for all $\mathbf{x \in \R^n}$. Hence we must have $A_i=\calO$ for each $i=1,2,\dots, m$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Eigenvalues of a Hermitian Matrix are Real NumbersEigenvalues of a Hermitian Matrix are Real Numbers Show that eigenvalues of a Hermitian matrix $A$ are real numbers. (The Ohio State University Linear Algebra Exam Problem)   We give two proofs. These two proofs are essentially the same. The second proof is a bit simpler and concise compared to the first one. […]
  • Inner Products, Lengths, and Distances of 3-Dimensional Real VectorsInner Products, Lengths, and Distances of 3-Dimensional Real Vectors For this problem, use the real vectors \[ \mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} , \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} . \] Suppose that $\mathbf{v}_4$ is another vector which is […]
  • Inner Product, Norm, and Orthogonal VectorsInner Product, Norm, and Orthogonal Vectors Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in […]
  • Find the Distance Between Two Vectors if the Lengths and the Dot Product are GivenFind the Distance Between Two Vectors if the Lengths and the Dot Product are Given Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are \[\|\mathbf{a}\|=\|\mathbf{b}\|=1\] and the inner product \[\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.\] Then determine the length $\|\mathbf{a}-\mathbf{b}\|$. (Note […]
  • Find the Inverse Matrix of a Matrix With FractionsFind the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix \[A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.\]   Hint. You may use the augmented matrix […]
  • 7 Problems on Skew-Symmetric Matrices7 Problems on Skew-Symmetric Matrices Let $A$ and $B$ be $n\times n$ skew-symmetric matrices. Namely $A^{\trans}=-A$ and $B^{\trans}=-B$. (a) Prove that $A+B$ is skew-symmetric. (b) Prove that $cA$ is skew-symmetric for any scalar $c$. (c) Let $P$ be an $m\times n$ matrix. Prove that $P^{\trans}AP$ is […]
  • Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like.Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like. Consider the matrix \[A=\begin{bmatrix} 3/2 & 2\\ -1& -3/2 \end{bmatrix} \in M_{2\times 2}(\R).\] (a) Find the eigenvalues and corresponding eigenvectors of $A$. (b) Show that for $\mathbf{v}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}\in \R^2$, we can choose […]
  • If a Matrix $A$ is Singular, then Exists Nonzero $B$ such that $AB$ is the Zero MatrixIf a Matrix $A$ is Singular, then Exists Nonzero $B$ such that $AB$ is the Zero Matrix Let $A$ be a $3\times 3$ singular matrix. Then show that there exists a nonzero $3\times 3$ matrix $B$ such that \[AB=O,\] where $O$ is the $3\times 3$ zero matrix.   Proof. Since $A$ is singular, the equation $A\mathbf{x}=\mathbf{0}$ has a nonzero […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
How to Find the Determinant of the $3\times 3$ Matrix

Find the determinant of the matix \[A=\begin{bmatrix} 100 & 101 & 102 \\ 101 &102 &103 \\ 102 & 103...

Close