Vector Space of Functions from a Set to a Vector Space

Vector Space Problems and Solutions

Problem 705

For a set $S$ and a vector space $V$ over a scalar field $\K$, define the set of all functions from $S$ to $V$
\[ \Fun ( S , V ) = \{ f : S \rightarrow V \} . \]

For $f, g \in \Fun(S, V)$, $z \in \K$, addition and scalar multiplication can be defined by
\[ (f+g)(s) = f(s) + g(s) \, \mbox{ and } (cf)(s) = c (f(s)) \, \mbox{ for all } s \in S . \]

(a) Prove that $\Fun(S, V)$ is a vector space over $\K$. What is the zero element?

(b) Let $S_1 = \{ s \}$ be a set consisting of one element. Find an isomorphism between $\Fun(S_1 , V)$ and $V$ itself. Prove that the map you find is actually a linear isomorpism.

(c) Suppose that $B = \{ e_1 , e_2 , \cdots , e_n \}$ is a basis of $V$. Use $B$ to construct a basis of $\Fun(S_1 , V)$.

(d) Let $S = \{ s_1 , s_2 , \cdots , s_m \}$. Construct a linear isomorphism between $\Fun(S, V)$ and the vector space of $n$-tuples of $V$, defined as
\[ V^m = \{ (v_1 , v_2 , \cdots , v_m ) \mid v_i \in V \mbox{ for all } 1 \leq i \leq m \} . \]

(e) Use the basis $B$ of $V$ to constract a basis of $\Fun(S, V)$ for an arbitrary finite set $S$. What is the dimension of $\Fun(S, V)$?

(f) Let $W \subseteq V$ be a subspace. Prove that $\Fun(S, W)$ is a subspace of $\Fun(S, V)$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that $\Fun(S, V)$ is a vector space over $\K$. What is the zero element?

We will prove that each vector space axioms holds for $\Fun(S, V)$.

Closed under addition and scalar multiplication: For $f , g \in \Fun(S, V)$ and $c, d \in \K$, $cf+dg$ is another function with domain $S$ defined by
\[ (cf+dg)(s) = cf(s) + dg(s) \in V \, \mbox{ for all } s \in S . \] Thus $cf+dg \in \Fun(S, V)$. This proves that $\Fun(S, V)$ is closed under addition and scalar multiplication.


Addition is associative: For $f, g, h \in \Fun(S, V)$ and $s \in S$ we have
\begin{align*}
((f+g)+h)(s) &= (f+g)(s) + h(s) \\
&= ( f(s) + g(s) ) + h(s) \\
&= f(s) + ( g(s) + h(s) ) \\
&= f(s) + (g+h)(s) \\
&= (f+(g+h))(s) . \end{align*}

Because $((f+g)+h)(s) = (f+(g+h))(s)$ holds for each $s \in S$, we can say that $(f+g)+h = f+(g+h)$.


Addition is commutative: Notice that for $s \in S$ we have
\[ (f+g)(s) = f(s) + g(s) = g(s) + f(s) = (g+f)(s) . \] Because this holds for every $s \in S$, we can say that $f+g = g+f$.


Zero vector: The zero vector is the function $\mathbf{0}$, defined by $\mathbf{0}(s) = 0 \in V$ for each $s \in S$. To check that $\mathbf{0}$ is the additive identity, we check for any $f \in \Fun(S, V)$ and $s \in S$,
\[ (f+ \mathbf{0})(s) = f(s) + \mathbf{0}(s) = f(s) + 0 = f(s) . \] Because this holds for each $s \in S$, we can say that $f + \mathbf{0} = f$.


Inverse vectors: For $f \in \Fun(S, V)$, its additive inverse is the function $(-f)$ defined by
\[ (-f)(s) = – f(s) \, \mbox{ for all } s \in S . \] To check that $-f$ is the inverse of $f$, we check for all $s \in S$
\[ (f + (-f))(s) = f(s) + (-f)(s) = f(s) – f(s) = 0 = \mathbf{0}(s) . \]


Scalar multiplication is associative: For $c, d \in \K$, $f \in \Fun(S, V)$ and $s \in S$ we have
\[ ((cd)(f))(s) = (cd) f(s) = c ( d f(s) ) = c ( df)(s) = (c (df) )(s) . \] Because this holds for each $s \in S$, we conclude that $(cd)(f) = c (df)$.


Scalar identity element: Let $1 \in \K$ be the multiplicative identity. Then for $f \in \Fun(S, V)$ and $s \in S$ we have
\[ (1f)(s) = 1 f(s) = f(s) . \] Because this holds for all $s \in S$, we conclude that $1f = f$.


Distributivity: Next we check distributivity. For $c, d \in \K$, $f \in \Fun(S, V)$ and $s \in S$, we have
\[ ( (c+d)(f) )(s) = (c+d) f(s) = c f(s) + d f(s) = (cf + df)(s) . \] Because this holds for all $s \in S$, we can conclude that
\[ (c+d)f = cf + df . \]

For $c \in \K$, $f, g \in \Fun(S, V)$ and $s \in S$ we have
\begin{align*}
( c(f+g))(s) &= c ( (f+g)(s) ) \\
&= c ( f(s) + g(s) ) \\
&= cf(s) + cg(s) \\
&= (cf + cg)(s) . \end{align*}

Because this holds for all $s \in S$, we conclude that
\[ c(f+g) = cf + cg . \]

We have shown that $\Fun(S, V)$ satisfies all of the vector space axioms, so it is a vector space.

(b) Let $S_1 = \{ s \}$ be a set consisting of one element. Find an isomorphism between $\Fun(S_1 , V)$ and $V$ itself. Prove that the map you find is actually a linear isomorpism.

Define the map $T : \Fun(S_1 , V) \rightarrow V$ by
\[ T(f) = f(s) \, \mbox{ for all } f \in \Fun(S_1 , V) . \]

We check that $T$ is a linear map. For $f, g \in \Fun(S_1, V)$ we have
\[ T(f+g) = (f+g)(s) = f(s) + g(s) = T(f) + T(g) . \] Thus $T$ is additive. Next, for $c \in \K$ and $f \in \Fun(S_1, V)$ we have
\[ T(cf) = (cf)(s) = c f(s) = c T(f) . \] This shows that $T$ respects scalar multiplication, and so $T$ is a linear map.


Next we prove that $T$ is an isomorphism. To see that $T$ is surjective, pick any $v \in V$. Define the map $f_v \in \Fun(S_1, V)$ by $f_v(s) = v$. Then $T(f_v) = f_v(s) = v$, and so $v$ lies in the range of $T$.

To see that $T$ is injective, it is enough to show that if $T(f) = 0 \in V$ then $f = \mathbf{0} \in \Fun(S_1, V)$. So suppose that $T(f) = 0$. Because $T(f) = f(s)$, this implies that $f(s) = 0$. But $\mathbf{0}(s) = 0$ as well. Because $f(s) = \mathbf{0}(s)$ for each $s \in S_1$ (which, remember, contains only the one element), we can conclude that $f = \mathbf{0}$.

We have shown that $T$ is linear, injective, and surjective. This finishes the proof that $T$ is a linear isomorphism.

(c) Find a basis of $\Fun(S_1 , V)$.

We can use the basis $B$ of $V$ and the linear isomorphism $T$ found in the previous part to define a basis of $\Fun(S_1, V)$. More specifically, the image of $B$ under the inverse isomorphism
\[ T^{-1} : V \rightarrow \Fun(S_1 , V) \] will define a basis of $\Fun(S_1 , V)$.

For $v \in V$ define the function $f_v$ by $f_v(s) = v$. It is clear that $T(f_v) = v$, and so $T^{-1}(v) = f_v$ for all $v \in V$. In particular, $T^{-1}(e_i) = f_{e_i}$ for each $1 \leq i \leq n$, and so the set $\{ f_{e_1} , f_{e_2} , \cdots , f_{e_n} \}$ forms a basis of $\Fun(S, V)$.

(d) Construct a linear isomorphism between $\Fun(S, V)$ and the vector space $V^m$

Define the map $T : \Fun(S, V) \rightarrow V^m$ by
\[ T(f) = ( f(s_1) , f(s_2) , \cdots , f(s_m) ) \in V^m \, \mbox{ for all } f \in \Fun(S, V) . \]

First we show that $T$ is linear. For $f, g \in \Fun(S, V)$ and $c, d \in \K$ we have
\begin{align*}
T(cf+dg) &= \left( (cf + dg)(s_1) , (cf + dg)(s_2) , \cdots , (cf + dg)(s_m) \right) \\
&= \left( (cf)(s_1) + (dg)(s_1) , (cf)(s_2) + (dg)(s_2) , \cdots , (cf)(s_m) + (dg)(s_m) \right) \\
&= \left( c f(s_1) , c f(s_2) , \cdots , c f(s_m) \right) + \left( d g(s_1) , d g(s_2) , \cdots , d g(s_m) \right) \\
&= c \left( f(s_1) , f(s_2) , \cdots , f(s_m) \right) + d \left( g(s_1) , g(s_2) , \cdots , g(s_m) \right) \\
&= c T(f) + d T(g) . \end{align*}

This proves that $T$ is a linear map.


Next we show that it is an isomorphism.

First we show surjectivity. For $(v_1 , v_2 , \cdots , v_m) \in V^m$ define the function $f$ by
\[ f(s_i) = v_i \, \mbox{ for } 1 \leq i \leq m . \]

Then
\[ T(f) = ( f(s_1) , f(s_2) , \cdots , f(s_m) ) = ( v_1 , v_2 , \cdots , v_m ) . \] Thus every element of $V^m$ lies in the range of $T$.


Next we check injectivity. Suppose that $T(f) = (0 , 0 , \cdots , 0) \in V^m$. This means that $f(s_i) = 0$ for each $1 \leq i \leq m$. Thus $f(s) = \mathbf{0}(s)$ for all $s \in S$, and so $f = \mathbf{0}$. This proves that $T$ is injective. Together with surjectivity and linearity, we have proven that $T$ is an isomorphism.

(e) Constract a basis of $\Fun(S, V)$ for an arbitrary finite set $S$. What is the dimension of $\Fun(S, V)$?

We will use the basis $B = \{ e_1 , \cdots , e_n \}$ of $V$ to create a basis for $V^m$. We will translate this basis into a basis of $\Fun(S, V)$ using the isomorphism $T$, or actually its inverse $T^{-1}$.

For integers $i, j$ with $1 \leq i \leq n$ and $1 \leq j \leq m$, define the vector
\[ d_i^j = ( 0 , \cdots , e_i , \cdots , 0 ) . \] Notice that every component is $0$ except for the $j$-th component, which is the vector $e_i$. The set $\{ d_i^j \}_{ \substack{1 \leq i \leq n \\ 1 \leq j \leq m} }$ is the standard basis of $V^m$ defined by $B$. The set $\{ T^{-1} ( d_i^j ) \}_{ \substack{ 1 \leq i \leq n \\ 1 \leq j \leq m}}$ will then be a basis of $\Fun(S, V)$.


To find $T^{-1}$, suppose that $T(f) = d_i^j$. Because the $j$-th component of $d_i^j$ is $e_i$, we must have that $f(s_j) = e_i$. Because all of the other components are $0$, we must have $f(s_k) = 0$ for all $k \neq j$. This information completely determines the function $f$. Define the function $\delta_i^j$ by
\[ \delta_i^j ( s_k ) = \left\{ \begin{array}{cl} e_i & \mbox{ if } k = j \\ 0 & \mbox{ if } k \neq j \end{array} \right. . \]

Then it is clear that $T(\delta_i^j) = d_i^j$; that is, $T^{-1}(d_i^j) = \delta_i^j$. Thus a basis of $\Fun(S, V)$ is formed by the set $\{ \delta_i^j \}_{ \substack{ 1 \leq i \leq n \\ 1 \leq j \leq m }}$. There are exactly $nm$ elements in this basis, thus $\Fun(S, V)$ has dimension $nm$.

(f) Prove that $\Fun(S, W)$ is a subspace of $\Fun(S, V)$.

We will show in one step that $\Fun(S, W)$ is closed under addition and scalar multiplication. For $f, g \in \Fun(S, W)$, $c, d \in \K$ and $s \in S$ we have
\[ (cf + dg)(s) = c f(s) + d g(s) \in W . \] This proves that $(cf + dg) : S \rightarrow W$, and so $(cf + dg) \in \Fun(S, W)$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Dimension of the Sum of Two SubspacesDimension of the Sum of Two Subspaces Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$. Then prove that \[\dim(U+V) \leq \dim(U)+\dim(V).\]   Definition (The sum of subspaces). Recall that the sum of subspaces $U$ and $V$ is \[U+V=\{\mathbf{x}+\mathbf{y} \mid […]
  • Prove a Given Subset is a Subspace  and Find a Basis and DimensionProve a Given Subset is a Subspace and Find a Basis and Dimension Let \[A=\begin{bmatrix} 4 & 1\\ 3& 2 \end{bmatrix}\] and consider the following subset $V$ of the 2-dimensional vector space $\R^2$. \[V=\{\mathbf{x}\in \R^2 \mid A\mathbf{x}=5\mathbf{x}\}.\] (a) Prove that the subset $V$ is a subspace of $\R^2$. (b) Find a basis for […]
  • Determine the Dimension of a Mysterious Vector Space From Coordinate VectorsDetermine the Dimension of a Mysterious Vector Space From Coordinate Vectors Let $V$ be a vector space and $B$ be a basis for $V$. Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ be vectors in $V$. Suppose that $A$ is the matrix whose columns are the coordinate vectors of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, […]
  • Vector Space of 2 by 2 Traceless MatricesVector Space of 2 by 2 Traceless Matrices Let $V$ be the vector space of all $2\times 2$ matrices whose entries are real numbers. Let \[W=\left\{\, A\in V \quad \middle | \quad A=\begin{bmatrix} a & b\\ c& -a \end{bmatrix} \text{ for any } a, b, c\in \R \,\right\}.\] (a) Show that $W$ is a subspace of […]
  • Determine the Values of $a$ so that $W_a$ is a SubspaceDetermine the Values of $a$ so that $W_a$ is a Subspace For what real values of $a$ is the set \[W_a = \{ f \in C(\mathbb{R}) \mid f(0) = a \}\] a subspace of the vector space $C(\mathbb{R})$ of all real-valued functions?   Solution. The zero element of $C(\mathbb{R})$ is the function $\mathbf{0}$ defined by […]
  • Subspaces of the Vector Space of All Real Valued Function on the IntervalSubspaces of the Vector Space of All Real Valued Function on the Interval Let $V$ be the vector space over $\R$ of all real valued functions defined on the interval $[0,1]$. Determine whether the following subsets of $V$ are subspaces or not. (a) $S=\{f(x) \in V \mid f(0)=f(1)\}$. (b) $T=\{f(x) \in V \mid […]
  • Linear Transformation and a Basis of the Vector Space $\R^3$Linear Transformation and a Basis of the Vector Space $\R^3$ Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$. Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$. Show […]
  • Find a Basis and Determine the Dimension of a Subspace of All Polynomials of Degree $n$ or LessFind a Basis and Determine the Dimension of a Subspace of All Polynomials of Degree $n$ or Less Let $P_n(\R)$ be the vector space over $\R$ consisting of all degree $n$ or less real coefficient polynomials. Let \[U=\{ p(x) \in P_n(\R) \mid p(1)=0\}\] be a subspace of $P_n(\R)$. Find a basis for $U$ and determine the dimension of $U$.   Solution. […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
Find a Basis for Nullspace, Row Space, and Range of a Matrix

Let $A=\begin{bmatrix} 2 & 4 & 6 & 8 \\ 1 &3 & 0 & 5 \\ 1 & 1...

Close