Prove that a Group of Order 217 is Cyclic and Find the Number of Generators

Group Theory Problems and Solutions in Mathematics

Problem 458

Let $G$ be a finite group of order $217$.

(a) Prove that $G$ is a cyclic group.

(b) Determine the number of generators of the group $G$.

 
LoadingAdd to solve later

Sponsored Links


 

Sylow’s Theorem

We will use Sylow’s theorem to prove part (a).

For a review of Sylow’s theorem, check out the post “Sylow’s Theorem (summary)“.

 

Proof.

(a) Prove that $G$ is a cyclic group.

Note the prime factorization $217=7\cdot 31$.
We first determine the number $n_p$ of Sylow $p$-group for $p=7, 31$.
Recall from Sylow’s theorem that
\begin{align*}
&n_p \equiv 1 \pmod{p}\\[6pt] &n_p \text{ divides } n/p.
\end{align*}

Thus, $n_7$ could be $1, 8, 15, 22, 29,\dots$ and $n_7$ needs to divide $217/7=31$.
Hence the only possible value for $n_7$ is $n_7=1$.
So there is a unique Sylow $7$-subgroup $P_7$ of $G$.

By Sylow’s theorem, the unique Sylow $7$-subgroup must be a normal subgroup of $G$.


Similarly, $n_{31}=1, 32, \dots$ and $n_{31}$ must divide $217/31=7$, and hence we must have $n_{31}=1$.
Thus $G$ has a unique normal Sylow $31$-subgroup $P_{31}$.


Note that these Sylow subgroup have prime order, and hence they are isomorphic to cyclic groups:
\[P_7\cong \Zmod{7} \text{ and } P_{31}\cong \Zmod{31}.\]

It is also straightforward to see that $P_7 \cap P_{31}=\{e\}$, where $e$ is the identity element in $G$.

In summary, we have

  1. $P_7, P_{31}$ are normal subgroups of $G$.
  2. $P_7 \cap P_{31}=\{e\}$.
  3. $|P_7P_{31}|=|G|$.

These yields that $G$ is a direct product of $P_7$ and $P_{31}$, and we obtain
\[G=P_7\times P_{31}\cong \Zmod{7} \times \Zmod{31}\cong \Zmod{217}.\] Hence $G$ is a cyclic group.

 

(b) Determine the number of generators of the group $G$.

Recall that the number of generators of a cyclic group of order $n$ is equal to the number of integers between $1$ and $n$ that are relatively prime to $n$.
Namely, the number of generators is equal to $\phi(n)$, where $\phi$ is the Euler totient function.

By part (a), we know that $G$ is a cyclic group of order $217$.
Thus, the number of generators of $G$ is
\begin{align*}
\phi(217)=\phi(7)\phi(31)=6\cdot 30=180,
\end{align*}
where the first equality follows since $\phi$ is multiplicative.


LoadingAdd to solve later

Sponsored Links

More from my site

  • A Group of Order $20$ is SolvableA Group of Order $20$ is Solvable Prove that a group of order $20$ is solvable.   Hint. Show that a group of order $20$ has a unique normal $5$-Sylow subgroup by Sylow's theorem. See the post summary of Sylow’s Theorem to review Sylow's theorem. Proof. Let $G$ be a group of order $20$. The […]
  • A Simple Abelian Group if and only if the Order is a Prime NumberA Simple Abelian Group if and only if the Order is a Prime Number Let $G$ be a group. (Do not assume that $G$ is a finite group.) Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number.   Definition. A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]
  • Every Group of Order 20449 is an Abelian GroupEvery Group of Order 20449 is an Abelian Group Prove that every group of order $20449$ is an abelian group.   Outline of the Proof Note that $20449=11^2 \cdot 13^2$. Let $G$ be a group of order $20449$. We prove by Sylow's theorem that there are a unique Sylow $11$-subgroup and a unique Sylow $13$-subgroup of […]
  • Group of Order 18 is SolvableGroup of Order 18 is Solvable Let $G$ be a finite group of order $18$. Show that the group $G$ is solvable.   Definition Recall that a group $G$ is said to be solvable if $G$ has a subnormal series \[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\] such […]
  • Subgroup Containing All $p$-Sylow Subgroups of a GroupSubgroup Containing All $p$-Sylow Subgroups of a Group Suppose that $G$ is a finite group of order $p^an$, where $p$ is a prime number and $p$ does not divide $n$. Let $N$ be a normal subgroup of $G$ such that the index $|G: N|$ is relatively prime to $p$. Then show that $N$ contains all $p$-Sylow subgroups of […]
  • Surjective Group Homomorphism to $\Z$ and Direct Product of Abelian GroupsSurjective Group Homomorphism to $\Z$ and Direct Product of Abelian Groups Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism. Prove that we have an isomorphism of groups: \[G \cong \ker(f)\times \Z.\]   Proof. Since $f:G\to \Z$ is surjective, there exists an element $a\in G$ such […]
  • Every Finitely Generated Subgroup of Additive Group $\Q$ of Rational Numbers is CyclicEvery Finitely Generated Subgroup of Additive Group $\Q$ of Rational Numbers is Cyclic Let $\Q=(\Q, +)$ be the additive group of rational numbers. (a) Prove that every finitely generated subgroup of $(\Q, +)$ is cyclic. (b) Prove that $\Q$ and $\Q \times \Q$ are not isomorphic as groups.   Proof. (a) Prove that every finitely generated […]
  • Group of Order $pq$ Has a Normal Sylow Subgroup and SolvableGroup of Order $pq$ Has a Normal Sylow Subgroup and Solvable Let $p, q$ be prime numbers such that $p>q$. If a group $G$ has order $pq$, then show the followings. (a) The group $G$ has a normal Sylow $p$-subgroup. (b) The group $G$ is solvable.   Definition/Hint For (a), apply Sylow's theorem. To review Sylow's theorem, […]

You may also like...

1 Response

  1. 06/24/2017

    […] Prove that a Group of Order 217 is Cyclic and Find the Number of Generators […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
The Order of a Conjugacy Class Divides the Order of the Group

Let $G$ be a finite group. The centralizer of an element $a$ of $G$ is defined to be \[C_G(a)=\{g\in G...

Close