# system-of-linear-equations-eye-catch

by Yu · Published · Updated

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

### More from my site

- Find All Matrices $B$ that Commutes With a Given Matrix $A$: $AB=BA$ Let \[A=\begin{bmatrix} 1 & 3\\ 2& 4 \end{bmatrix}.\] Then (a) Find all matrices \[B=\begin{bmatrix} x & y\\ z& w \end{bmatrix}\] such that $AB=BA$. (b) Use the results of part (a) to exhibit $2\times 2$ matrices $B$ and $C$ such that \[AB=BA \text{ and } […]
- Sherman-Woodbery Formula for the Inverse Matrix Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\R^n$, and let $I$ be the $n \times n$ identity matrix. Suppose that the inner product of $\mathbf{u}$ and $\mathbf{v}$ satisfies \[\mathbf{v}^{\trans}\mathbf{u}\neq -1.\] Define the matrix […]
- Compute and Simplify the Matrix Expression Including Transpose and Inverse Matrices Let $A, B, C$ be the following $3\times 3$ matrices. \[A=\begin{bmatrix} 1 & 2 & 3 \\ 4 &5 &6 \\ 7 & 8 & 9 \end{bmatrix}, B=\begin{bmatrix} 1 & 0 & 1 \\ 0 &3 &0 \\ 1 & 0 & 5 \end{bmatrix}, C=\begin{bmatrix} -1 & 0\ & 1 \\ 0 &5 &6 \\ 3 & 0 & […]
- The Image of an Ideal Under a Surjective Ring Homomorphism is an Ideal Let $R$ and $S$ be rings. Suppose that $f: R \to S$ is a surjective ring homomorphism. Prove that every image of an ideal of $R$ under $f$ is an ideal of $S$. Namely, prove that if $I$ is an ideal of $R$, then $J=f(I)$ is an ideal of $S$. Proof. As in the […]
- Every Finite Group Having More than Two Elements Has a Nontrivial Automorphism Prove that every finite group having more than two elements has a nontrivial automorphism. (Michigan State University, Abstract Algebra Qualifying Exam) Proof. Let $G$ be a finite group and $|G|> 2$. Case When $G$ is a Non-Abelian Group Let us first […]
- Powers of a Matrix Cannot be a Basis of the Vector Space of Matrices Let $n>1$ be a positive integer. Let $V=M_{n\times n}(\C)$ be the vector space over the complex numbers $\C$ consisting of all complex $n\times n$ matrices. The dimension of $V$ is $n^2$. Let $A \in V$ and consider the set \[S_A=\{I=A^0, A, A^2, \dots, A^{n^2-1}\}\] of $n^2$ […]
- Determine the Quotient Ring $\Z[\sqrt{10}]/(2, \sqrt{10})$ Let \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}\] be an ideal of the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}.\] Then determine the quotient ring $\Z[\sqrt{10}]/P$. Is $P$ a prime ideal? Is $P$ a maximal ideal? Solution. We […]
- If a Half of a Group are Elements of Order 2, then the Rest form an Abelian Normal Subgroup of Odd Order Let $G$ be a finite group of order $2n$. Suppose that exactly a half of $G$ consists of elements of order $2$ and the rest forms a subgroup. Namely, suppose that $G=S\sqcup H$, where $S$ is the set of all elements of order in $G$, and $H$ is a subgroup of $G$. The cardinalities […]