Equivalent Conditions to be a Unitary Matrix

Linear algebra problems and solutions

Problem 29

A complex matrix is called unitary if $\overline{A}^{\trans} A=I$.

The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector $\mathbf{x}$ is defined to be $||\mathbf{x}||:=\sqrt{(\mathbf{x}, \mathbf{x})}$.

Let $A$ be an $n \times n$ complex matrix. Prove that the followings are equivalent.

(a) The matrix $A$ is unitary.

(b) $||A \mathbf{x}||=|| \mathbf{x}||$ for any $n$-dimensional complex vector $\mathbf{x}$.

(c) $(A\mathbf{x}, A\mathbf{y})=(\mathbf{x}, \mathbf{y})$ for any $n$-dimensional complex vectors $x, y$

LoadingAdd to solve later

Steps.

Try to show the implications (a)$\Rightarrow$ (b) $\Rightarrow$ (c) $\Rightarrow$ (a).

Proof.

We will show that (a)$\Rightarrow$ (b) $\Rightarrow$ (c) $\Rightarrow$ (a).


(a) $\Rightarrow$ (b).

Suppose that $A$ is unitary. Then we have for any $n$-dimensional complex vector $\mathbf{x}$
\begin{align*}
||A\mathbf{x}|| &=\sqrt{ {(\overline{A\mathbf{x}})^{\trans}} (A \mathbf{x})}
=\sqrt{ \overline{\mathbf{x}}^{\trans} \overline{A}^{\trans} A\mathbf{x} } \\
&= \sqrt{ \overline{\mathbf{x}}^{\trans} \mathbf{x} }=||\mathbf{x}||.
\end{align*}

(b) $\Rightarrow$ (c).

Suppose that the statement (b) is true.
Then we compute $||A(\mathbf{x}+\mathbf{y})||^2=||\mathbf{x}+\mathbf{y}||^2$.
The left hand side is
\begin{align*}
(A\mathbf{x}+A\mathbf{y} ,A\mathbf{x}+A\mathbf{y})&=(A\mathbf{x},A\mathbf{x})+(A\mathbf{x},A\mathbf{y})+(A\mathbf{y},A\mathbf{x})+(A\mathbf{y}, A\mathbf{y}) \\
&=||A\mathbf{x}||^2 + (A\mathbf{x},A\mathbf{y}) +\overline{(A\mathbf{x},A\mathbf{y})} + ||A\mathbf{y}||.
\end{align*}
The right hand side is
\begin{align*}
(\mathbf{x}, \mathbf{x})+(\mathbf{x}, \mathbf{y})+(\mathbf{y}, \mathbf{x})+(\mathbf{y}, \mathbf{y})=||\mathbf{x}||+(\mathbf{x}, \mathbf{y}) +\overline{(\mathbf{x}, \mathbf{y})} +||\mathbf{y}||.
\end{align*}
Using (b) we cancel the length terms and we obtain the relation
\begin{align*}
(A\mathbf{x},A\mathbf{y}) +\overline{(A\mathbf{x},A\mathbf{y})}=(\mathbf{x}, \mathbf{y}) +\overline{(\mathbf{x}, \mathbf{y})}. \tag{*}
\end{align*}
that holds for any $\mathbf{x}$ and $\mathbf{y}$.

This implies that we have the equality of the real parts $\Repart (A\mathbf{x},A\mathbf{y})= \Repart (\mathbf{x}, \mathbf{y})$.
To show that the imaginary parts are also equal, we substitute $ix$ into $x$ in the equation (*). (Here $i=\sqrt{-1}$.)
Then we have
\begin{align*}
i\left((A\mathbf{x},A\mathbf{y}) -\overline{(A\mathbf{x},A\mathbf{y})} \right)=i\left( (\mathbf{x}, \mathbf{y}) -\overline{(\mathbf{x}, \mathbf{y})} \right). \end{align*}
Thus, we have $\Impart( A\mathbf{x},A\mathbf{y})=\Impart (\mathbf{x}, \mathbf{y})$.
Hence we have $(A\mathbf{x},A\mathbf{y})=(\mathbf{x}, \mathbf{y})$.

(c) $\Rightarrow$ (a).

We give two proofs of this implication.

By assumption (c), we have $(A\mathbf{x},A\mathbf{y})=(\mathbf{x}, \mathbf{y})$ for any $\mathbf{x}$ and $\mathbf{y}$. Equivalently we have
\begin{align*}
\overline{\mathbf{x}}^{\trans}\overline{A}^{\trans}A \mathbf{y}=(\mathbf{x}, \mathbf{y}) \tag{**}.
\end{align*}
Let $e_i$ be a unit $n$-dimensional vector whose entries are all zero except that the $i$-th entry is $1$.
Take $\mathbf{x}=e_i$ and $\mathbf{y}=e_j$, we see that the left hand side of (**) is the $(i,j)$-entry of the matrix $\overline{A}^{\trans}A$ and the right hand side of (**) is $\delta_{i,j}$. Thus we have $\overline{A}^{\trans}A=I_n$.

The 2nd Proof.

We have for any $\mathbf{x}$ and $\mathbf{y}$,
\begin{align*}
(\mathbf{x}, (\overline{A}^{\trans} A -I_n) \mathbf{y}) &= (\mathbf{x}, \overline{A}^{\trans}A \mathbf{y})-(\mathbf{x}, \mathbf{y}) \\
&=(A \mathbf{x}, A\mathbf{y})-(\mathbf{x}, \mathbf{y})=0.
\end{align*}
Therefore, we have $\overline{A}^{\trans} A =I_n$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Eigenvalues of Real Skew-Symmetric Matrix are Zero or Purely Imaginary and the Rank is EvenEigenvalues of Real Skew-Symmetric Matrix are Zero or Purely Imaginary and the Rank is Even Let $A$ be a real skew-symmetric matrix, that is, $A^{\trans}=-A$. Then prove the following statements. (a) Each eigenvalue of the real skew-symmetric matrix $A$ is either $0$ or a purely imaginary number. (b) The rank of $A$ is even.   Proof. (a) Each […]
  • Find the Distance Between Two Vectors if the Lengths and the Dot Product are GivenFind the Distance Between Two Vectors if the Lengths and the Dot Product are Given Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are \[\|\mathbf{a}\|=\|\mathbf{b}\|=1\] and the inner product \[\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.\] Then determine the length $\|\mathbf{a}-\mathbf{b}\|$. (Note […]
  • Inner Product, Norm, and Orthogonal VectorsInner Product, Norm, and Orthogonal Vectors Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in […]
  • Find the Inverse Matrix of a Matrix With FractionsFind the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix \[A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.\]   Hint. You may use the augmented matrix […]
  • Inner Products, Lengths, and Distances of 3-Dimensional Real VectorsInner Products, Lengths, and Distances of 3-Dimensional Real Vectors For this problem, use the real vectors \[ \mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} , \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} . \] Suppose that $\mathbf{v}_4$ is another vector which is […]
  • Prove the Cauchy-Schwarz InequalityProve the Cauchy-Schwarz Inequality Let $\mathbf{a}, \mathbf{b}$ be vectors in $\R^n$. Prove the Cauchy-Schwarz inequality: \[|\mathbf{a}\cdot \mathbf{b}|\leq \|\mathbf{a}\|\,\|\mathbf{b}\|.\]   We give two proofs. Proof 1 Let $x$ be a variable and consider the length of the vector […]
  • Dot Product, Lengths, and Distances of Complex VectorsDot Product, Lengths, and Distances of Complex Vectors For this problem, use the complex vectors \[ \mathbf{w}_1 = \begin{bmatrix} 1 + i \\ 1 - i \\ 0 \end{bmatrix} , \, \mathbf{w}_2 = \begin{bmatrix} -i \\ 0 \\ 2 - i \end{bmatrix} , \, \mathbf{w}_3 = \begin{bmatrix} 2+i \\ 1 - 3i \\ 2i \end{bmatrix} . \] Suppose $\mathbf{w}_4$ is […]
  • Sum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All ZeroSum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All Zero Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if \[A_1^2+A_2^2+\cdots+A_m^2=\calO,\] where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.   Hint. Recall that a complex matrix $A$ is Hermitian if […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
Finite Order Matrix and its Trace

Let $A$ be an $n\times n$ matrix and suppose that $A^r=I_n$ for some positive integer $r$. Then show that (a)...

Close