# linear=algebra-eye-catch2

by Yu · Published · Updated

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

### More from my site

- Any Vector is a Linear Combination of Basis Vectors Uniquely Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that any vector $\mathbf{v}\in V$ can be written uniquely as \[\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3,\] where $c_1, c_2, c_3$ are […]
- Subspaces of the Vector Space of All Real Valued Function on the Interval Let $V$ be the vector space over $\R$ of all real valued functions defined on the interval $[0,1]$. Determine whether the following subsets of $V$ are subspaces or not. (a) $S=\{f(x) \in V \mid f(0)=f(1)\}$. (b) $T=\{f(x) \in V \mid […]
- A Condition that a Linear System has Nontrivial Solutions For what value(s) of $a$ does the system have nontrivial solutions? \begin{align*} &x_1+2x_2+x_3=0\\ &-x_1-x_2+x_3=0\\ & 3x_1+4x_2+ax_3=0. \end{align*} Solution. First note that the system is homogeneous and hence it is consistent. Thus if the system has a nontrivial […]
- Diagonalize a 2 by 2 Matrix if Diagonalizable Determine whether the matrix \[A=\begin{bmatrix} 1 & 4\\ 2 & 3 \end{bmatrix}\] is diagonalizable. If so, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$. (The Ohio State University, Linear Algebra Final Exam […]
- The Sum of Cosine Squared in an Inner Product Space Let $\mathbf{v}$ be a vector in an inner product space $V$ over $\R$. Suppose that $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis of $V$. Let $\theta_i$ be the angle between $\mathbf{v}$ and $\mathbf{u}_i$ for $i=1,\dots, n$. Prove that \[\cos […]
- Find a Matrix so that a Given Subset is the Null Space of the Matrix, hence it’s a Subspace Let $W$ be the subset of $\R^3$ defined by \[W=\left \{ \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\in \R^3 \quad \middle| \quad 5x_1-2x_2+x_3=0 \right \}.\] Exhibit a $1\times 3$ matrix $A$ such that $W=\calN(A)$, the null space of $A$. […]
- Determine Whether Given Subsets in $\R^4$ are Subspaces or Not (a) Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ satisfying \[2x+4y+3z+7w+1=0.\] Determine whether $S$ is a subspace of $\R^4$. If so prove it. If not, explain why it is not a […]
- If Generators $x, y$ Satisfy the Relation $xy^2=y^3x$, $yx^2=x^3y$, then the Group is Trivial Let $x, y$ be generators of a group $G$ with relation \begin{align*} xy^2=y^3x,\tag{1}\\ yx^2=x^3y.\tag{2} \end{align*} Prove that $G$ is the trivial group. Proof. Let $e$ be the identity element of $G$. We […]