The Image of an Ideal Under a Surjective Ring Homomorphism is an Ideal
Let $R$ and $S$ be rings. Suppose that $f: R \to S$ is a surjective ring homomorphism.
Prove that every image of an ideal of $R$ under $f$ is an ideal of $S$.
Namely, prove that if $I$ is an ideal of $R$, then $J=f(I)$ is an ideal of $S$.
Proof.
As in the […]
Properties of Nonsingular and Singular Matrices
An $n \times n$ matrix $A$ is called nonsingular if the only solution of the equation $A \mathbf{x}=\mathbf{0}$ is the zero vector $\mathbf{x}=\mathbf{0}$.
Otherwise $A$ is called singular.
(a) Show that if $A$ and $B$ are $n\times n$ nonsingular matrices, then the product $AB$ is […]
Find All Matrices Satisfying a Given Relation
Let $a$ and $b$ be two distinct positive real numbers. Define matrices
\[A:=\begin{bmatrix}
0 & a\\
a & 0
\end{bmatrix}, \,\,
B:=\begin{bmatrix}
0 & b\\
b& 0
\end{bmatrix}.\]
Find all the pairs $(\lambda, X)$, where $\lambda$ is a real number and $X$ is a […]
Compute Determinant of a Matrix Using Linearly Independent Vectors
Let $A$ be a $3 \times 3$ matrix.
Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have
\[A\mathbf{x}=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, A\mathbf{y}=\begin{bmatrix}
0 \\
1 \\
0
[…]
Find a Nonsingular Matrix $A$ satisfying $3A=A^2+AB$
(a) Find a $3\times 3$ nonsingular matrix $A$ satisfying $3A=A^2+AB$, where \[B=\begin{bmatrix}
2 & 0 & -1 \\
0 &2 &-1 \\
-1 & 0 & 1
\end{bmatrix}.\]
(b) Find the inverse matrix of $A$.
Solution
(a) Find a $3\times 3$ nonsingular matrix $A$.
Assume […]
A Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring
Let $R$ be the ring of all continuous functions on the interval $[0, 2]$.
Let $I$ be the subset of $R$ defined by
\[I:=\{ f(x) \in R \mid f(1)=0\}.\]
Then prove that $I$ is an ideal of the ring $R$.
Moreover, show that $I$ is maximal and determine […]
Give a Formula for a Linear Transformation if the Values on Basis Vectors are Known
Let $T: \R^2 \to \R^2$ be a linear transformation.
Let
\[
\mathbf{u}=\begin{bmatrix}
1 \\
2
\end{bmatrix}, \mathbf{v}=\begin{bmatrix}
3 \\
5
\end{bmatrix}\]
be 2-dimensional vectors.
Suppose that
\begin{align*}
T(\mathbf{u})&=T\left( \begin{bmatrix}
1 \\
[…]
Union of Subspaces is a Subspace if and only if One is Included in Another
Let $W_1, W_2$ be subspaces of a vector space $V$. Then prove that $W_1 \cup W_2$ is a subspace of $V$ if and only if $W_1 \subset W_2$ or $W_2 \subset W_1$.
Proof.
If $W_1 \cup W_2$ is a subspace, then $W_1 \subset W_2$ or $W_2 \subset […]