Author: Yu

Union of Two Subgroups is Not a Group

Problem 625

Let $G$ be a group and let $H_1, H_2$ be subgroups of $G$ such that $H_1 \not \subset H_2$ and $H_2 \not \subset H_1$.

(a) Prove that the union $H_1 \cup H_2$ is never a subgroup in $G$.

(b) Prove that a group cannot be written as the union of two proper subgroups.

Read solution

LoadingAdd to solve later

Ring Homomorphisms and Radical Ideals

Problem 624

Let $R$ and $R’$ be commutative rings and let $f:R\to R’$ be a ring homomorphism.
Let $I$ and $I’$ be ideals of $R$ and $R’$, respectively.

(a) Prove that $f(\sqrt{I}\,) \subset \sqrt{f(I)}$.

(b) Prove that $\sqrt{f^{-1}(I’)}=f^{-1}(\sqrt{I’})$

(c) Suppose that $f$ is surjective and $\ker(f)\subset I$. Then prove that $f(\sqrt{I}\,) =\sqrt{f(I)}$

Read solution

LoadingAdd to solve later

The Set of Square Elements in the Multiplicative Group $(\Zmod{p})^*$

Problem 616

Suppose that $p$ is a prime number greater than $3$.
Consider the multiplicative group $G=(\Zmod{p})^*$ of order $p-1$.

(a) Prove that the set of squares $S=\{x^2\mid x\in G\}$ is a subgroup of the multiplicative group $G$.

(b) Determine the index $[G : S]$.

(c) Assume that $-1\notin S$. Then prove that for each $a\in G$ we have either $a\in S$ or $-a\in S$.

Read solution

LoadingAdd to solve later

Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$

Problem 613

Let $m$ and $n$ be positive integers such that $m \mid n$.

(a) Prove that the map $\phi:\Zmod{n} \to \Zmod{m}$ sending $a+n\Z$ to $a+m\Z$ for any $a\in \Z$ is well-defined.

(b) Prove that $\phi$ is a group homomorphism.

(c) Prove that $\phi$ is surjective.

(d) Determine the group structure of the kernel of $\phi$.

Read solution

LoadingAdd to solve later

Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$

Problem 612

Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$.

(a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ is a basis for $W$.

(b) Prove that the set $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.

Read solution

LoadingAdd to solve later