## Determine the Quotient Ring $\Z[\sqrt{10}]/(2, \sqrt{10})$

## Problem 487

Let

\[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}\]
be an ideal of the ring

\[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}.\]
Then determine the quotient ring $\Z[\sqrt{10}]/P$.

Is $P$ a prime ideal? Is $P$ a maximal ideal?