In general, we cannot extend a $\Z$-module into a $\Q$-module.

We give a counterexample. Let $M=\Zmod{2}$ be the order $2$ cyclic abelian group.
Hence it is a naturally $\Z$-module. We prove that this action cannot be extended to a $\Q$-action.
Let us assume the contrary.

Then for any $x\in M$, let
\[M\ni y:=\frac{1}{2}\cdot x.\]
Then we have
\[x=1\cdot x=2\cdot \frac{1}{2}\cdot x=2y=0\]
in $M=\Zmod{2}$.

This is a contradiction since $M$ contains a non-zero element.
Therefore, the $\Z$-action cannot be extended to a $\Q$-action.

Fundamental Theorem of Finitely Generated Abelian Groups and its application
In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.
Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]

Short Exact Sequence and Finitely Generated Modules
Let $R$ be a ring with $1$. Let
\[0\to M\xrightarrow{f} M' \xrightarrow{g} M^{\prime\prime} \to 0 \tag{*}\]
be an exact sequence of left $R$-modules.
Prove that if $M$ and $M^{\prime\prime}$ are finitely generated, then $M'$ is also finitely generated.
[…]

Finitely Generated Torsion Module Over an Integral Domain Has a Nonzero Annihilator
(a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module.
Prove that the module $M$ has a nonzero annihilator.
In other words, show that there is a nonzero element $r\in R$ such that $rm=0$ for all $m\in M$.
Here $r$ does not depend on […]

Annihilator of a Submodule is a 2-Sided Ideal of a Ring
Let $R$ be a ring with $1$ and let $M$ be a left $R$-module.
Let $S$ be a subset of $M$. The annihilator of $S$ in $R$ is the subset of the ring $R$ defined to be
\[\Ann_R(S)=\{ r\in R\mid rx=0 \text{ for all } x\in S\}.\]
(If $rx=0, r\in R, x\in S$, then we say $r$ annihilates […]

Basic Exercise Problems in Module Theory
Let $R$ be a ring with $1$ and $M$ be a left $R$-module.
(a) Prove that $0_Rm=0_M$ for all $m \in M$.
Here $0_R$ is the zero element in the ring $R$ and $0_M$ is the zero element in the module $M$, that is, the identity element of the additive group $M$.
To simplify the […]

Submodule Consists of Elements Annihilated by Some Power of an Ideal
Let $R$ be a ring with $1$ and let $M$ be an $R$-module. Let $I$ be an ideal of $R$.
Let $M'$ be the subset of elements $a$ of $M$ that are annihilated by some power $I^k$ of the ideal $I$, where the power $k$ may depend on $a$.
Prove that $M'$ is a submodule of […]