Diagonalize a 2 by 2 Matrix if Diagonalizable

Ohio State University exam problems and solutions in mathematics

Problem 477

Determine whether the matrix
\[A=\begin{bmatrix}
1 & 4\\
2 & 3
\end{bmatrix}\] is diagonalizable.

If so, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

(The Ohio State University, Linear Algebra Final Exam Problem)
 
FavoriteLoadingAdd to solve later

Sponsored Links

Solution.

To determine whether the matrix $A$ is diagonalizable, we first find eigenvalues of $A$.
To do so, we compute the characteristic polynomial $p(t)$ of $A$:
\begin{align*}
p(t)&=\begin{vmatrix}
1-t & 4\\
2& 3-t
\end{vmatrix}
=(1-t)(3-t)-8\\[6pt] &=t^2-4t-5=(t+1)(t-5).
\end{align*}

The roots of the characteristic polynomial $p(t)$ are eigenvalues of $A$.
Hence the eigenvalues of $A$ are $-1$ and $5$.

Since the $2\times 2$ matrix $A$ has two distinct eigenvalues, it is diagonalizable.


To find the invertible matrix $S$, we need eigenvectors.

Let us find the eigenvectors corresponding to the eigenvalue $-1$.
By elementary row operations, we have
\begin{align*}
&A-(-1)I=A+I=\begin{bmatrix}
2 & 4\\
2& 4
\end{bmatrix}\\[6pt] &\xrightarrow{R_2-R_1}
\begin{bmatrix}
2 & 4\\
0& 0
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_1}
\begin{bmatrix}
1 & 2\\
0& 0
\end{bmatrix}.
\end{align*}
It follows that the eigenvectors corresponding to $-1$ are of the form
\[a\begin{bmatrix}
-2 \\
1
\end{bmatrix}\] for any nonzero scalar $a$.


Similarly, we have
\begin{align*}
A-5I=\begin{bmatrix}
-4 & 4\\
2& -2
\end{bmatrix}
\xrightarrow{\frac{-1}{4}R_1}
\begin{bmatrix}
1 & -1\\
2& -2
\end{bmatrix}
\xrightarrow{R_2-2R_1}
\begin{bmatrix}
1 & -1\\
0& 0
\end{bmatrix}.
\end{align*}
Hence the eigenvectors corresponding to $5$ are of the form
\[b\begin{bmatrix}
1 \\
1
\end{bmatrix}\] for any nonzero scalar $b$.

Thus, $\mathbf{u}=\begin{bmatrix}
-2 \\
1
\end{bmatrix}$ and $\mathbf{v}=\begin{bmatrix}
1 \\
1
\end{bmatrix}$ are basis vectors of eigenspace $E_{-1}, E_{5}$, respectively.


Define
\[S:=\begin{bmatrix}
\mathbf{u} & \mathbf{v}
\end{bmatrix}
=\begin{bmatrix}
-2 & 1\\
1& 1
\end{bmatrix}.\] Then by the general procedure of the diagonalization, we have
\begin{align*}
S^{-1}AS=D,
\end{align*}
where
\[D:=\begin{bmatrix}
-1 & 0\\
0& 5
\end{bmatrix}.\]

Final Exam Problems and Solution. (Linear Algebra Math 2568 at the Ohio State University)

This problem is one of the final exam problems of Linear Algebra course at the Ohio State University (Math 2568).

The other problems can be found from the links below.

  1. Find All the Eigenvalues of 4 by 4 Matrix
  2. Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue
  3. Diagonalize a 2 by 2 Matrix if Diagonalizable (This page)
  4. Find an Orthonormal Basis of the Range of a Linear Transformation
  5. The Product of Two Nonsingular Matrices is Nonsingular
  6. Determine Whether Given Subsets in ℝ4 R 4 are Subspaces or Not
  7. Find a Basis of the Vector Space of Polynomials of Degree 2 or Less Among Given Polynomials
  8. Find Values of $a , b , c$ such that the Given Matrix is Diagonalizable
  9. Idempotent Matrix and its Eigenvalues
  10. Diagonalize the 3 by 3 Matrix Whose Entries are All One
  11. Given the Characteristic Polynomial, Find the Rank of the Matrix
  12. Compute $A^{10}\mathbf{v}$ Using Eigenvalues and Eigenvectors of the Matrix $A$
  13. Determine Whether There Exists a Nonsingular Matrix Satisfying $A^4=ABA^2+2A^3$

FavoriteLoadingAdd to solve later

Sponsored Links

More from my site

  • Maximize the Dimension of the Null Space of $A-aI$Maximize the Dimension of the Null Space of $A-aI$ Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.\] Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]
  • Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible.Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible. Let \[A=\begin{bmatrix} 1 & 3 & 3 \\ -3 &-5 &-3 \\ 3 & 3 & 1 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 4 & 3 \\ -4 &-6 &-3 \\ 3 & 3 & 1 \end{bmatrix}.\] For this problem, you may use the fact that both matrices have the same characteristic […]
  • Diagonalize the 3 by 3 Matrix Whose Entries are All OneDiagonalize the 3 by 3 Matrix Whose Entries are All One Diagonalize the matrix \[A=\begin{bmatrix} 1 & 1 & 1 \\ 1 &1 &1 \\ 1 & 1 & 1 \end{bmatrix}.\] Namely, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$. (The Ohio State University, Linear Algebra Final Exam […]
  • Quiz 13 (Part 1) Diagonalize a MatrixQuiz 13 (Part 1) Diagonalize a Matrix Let \[A=\begin{bmatrix} 2 & -1 & -1 \\ -1 &2 &-1 \\ -1 & -1 & 2 \end{bmatrix}.\] Determine whether the matrix $A$ is diagonalizable. If it is diagonalizable, then diagonalize $A$. That is, find a nonsingular matrix $A$ and a diagonal matrix $D$ such that […]
  • Determine Dimensions of Eigenspaces From Characteristic Polynomial of Diagonalizable MatrixDetermine Dimensions of Eigenspaces From Characteristic Polynomial of Diagonalizable Matrix Let $A$ be an $n\times n$ matrix with the characteristic polynomial \[p(t)=t^3(t-1)^2(t-2)^5(t+2)^4.\] Assume that the matrix $A$ is diagonalizable. (a) Find the size of the matrix $A$. (b) Find the dimension of the eigenspace $E_2$ corresponding to the eigenvalue […]
  • How to Diagonalize a Matrix. Step by Step Explanation.How to Diagonalize a Matrix. Step by Step Explanation. In this post, we explain how to diagonalize a matrix if it is diagonalizable. As an example, we solve the following problem. Diagonalize the matrix \[A=\begin{bmatrix} 4 & -3 & -3 \\ 3 &-2 &-3 \\ -1 & 1 & 2 \end{bmatrix}\] by finding a nonsingular […]
  • True or False. Every Diagonalizable Matrix is InvertibleTrue or False. Every Diagonalizable Matrix is Invertible Is every diagonalizable matrix invertible?   Solution. The answer is No. Counterexample We give a counterexample. Consider the $2\times 2$ zero matrix. The zero matrix is a diagonal matrix, and thus it is diagonalizable. However, the zero matrix is not […]
  • Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$ Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities. What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix? (The Ohio State University, Linear Algebra Final Exam […]

You may also like...

5 Responses

  1. 08/12/2017

    […] Diagonalize a 2 by 2 Matrix if Diagonalizable […]

  2. 09/28/2017

    […] Diagonalize a 2 by 2 Matrix if Diagonalizable […]

  3. 10/11/2017

    […] Diagonalize a 2 by 2 Matrix if Diagonalizable […]

  4. 10/16/2017

    […] Diagonalize a 2 by 2 Matrix if Diagonalizable […]

  5. 10/16/2017

    […] Diagonalize a 2 by 2 Matrix if Diagonalizable […]

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue

Let \[A=\begin{bmatrix} 1 & 2 & 1 \\ -1 &4 &1 \\ 2 & -4 & 0 \end{bmatrix}.\] The matrix...

Close